Bialgebraic Reasoning on Higher-Order Program Equivalence

Henning Urbat

j.w.w. Sergey Goncharov, Stefan Milius, Stelios Tsampas

Friedrich-Alexander-Universität Erlangen-Nürnberg

LICS 2024

Contextual Equivalence

When are two programs p, q of a higher-order language equivalent?

Contextual Equivalence
$$p pprox_{
m ctx} q$$
 iff

e.g. λ -calculus

for all contexts $C[\cdot]$: C[p] terminates $\iff C[q]$ terminates.

Hard to prove directly → need efficient proof techniques!

- Powerful, robust, widely applicable proof technique.
- ② Ad hoc:

Each language needs tailor-made notions + (complex) soundness proof.

This Talk

Generic, language-independent approach based on

cf. Turi & Plotkin, LICS'97

Higher-Order Abstract GSOS

→ abstract bialgebraic theory of higher-order operational semantics.

Untyped CBN λ -calculus

Categorical Abstraction

Syntax

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{}{\lambda x.p \xrightarrow{q} p[q/x]}$$

Oper. model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

higher-order LTS on λ -terms

Untyped CBN λ -calculus

Categorical Abstraction

Syntax — Fiore, Plotkin, Turi, LICS'99

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{}{\lambda x.p \xrightarrow{q} p[q/x]}$$

Oper. model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Untyped CBN λ -calculus

Syntax ($\Sigma : \mathbf{Set}^{\mathcal{F}} \to \mathbf{Set}^{\mathcal{F}}$)

$$p, q ::= x \mid pq \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{}{\lambda x.p \xrightarrow{q} p[q/x]}$$

Oper. model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Untyped CBN λ -calculus

$\mathsf{Syntax} \; (\Sigma \colon \mathsf{Set}^{\mathcal{F}} \to \mathsf{Set}^{\mathcal{F}})$

$$p, q ::= x \mid pq \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{}{\lambda x.p \xrightarrow{q} p[q/x]}$$

Oper. model

$$\gamma \colon \Lambda \to \Lambda + \Lambda^{\Lambda}$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Untyped CBN λ -calculus

$\mathsf{Syntax} \; (\Sigma \colon \mathsf{Set}^{\mathcal{F}} \to \mathsf{Set}^{\mathcal{F}})$

$$p, q ::= x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) \ q \to p[q/x]}{\lambda x.p \xrightarrow{q} p[q/x]} \frac{p \to p'}{p \ q \to p' \ q}$$

Oper. model $(B(X, Y)=Y+Y^X)$

$$\gamma \colon \Lambda \to B(\Lambda, \Lambda)$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Untyped CBN λ -calculus

Syntax ($\Sigma : \mathsf{Set}^\mathcal{F} \to \mathsf{Set}^\mathcal{F}$)

 $p, q := x \mid pq \mid \lambda x.p$

Operational rules $p \rightarrow p'$

 $\overline{(\lambda x.p) q \to p[q/x]} \quad \overline{p q \to p' q}$

 $\lambda x.p \xrightarrow{q} p[q/x]$

Oper. model $(B(X,Y)=Y+Y^X)$ $\gamma \colon \Lambda \to B(\Lambda, \Lambda)$

Syntax ($\Sigma : \mathbb{C} \to \mathbb{C}$)

Categorical Abstraction

Initial algebra $\mu\Sigma$

Oper. model ($B: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$)

 $\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$

higher-order coalgebra

Untyped CBN λ -calculus

Initial algebra $\mu\Sigma$

$$\mathsf{Syntax} \; \big(\Sigma \colon \mathsf{Set}^{\mathcal{F}} \to \mathsf{Set}^{\mathcal{F}} \big)$$

$$p, q := x \mid pq \mid \lambda x.p$$

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Operational rules
$$p \to p'$$

$$\frac{\overline{(\lambda x.p) \ q \to p[q/x]} \quad \overline{p \ q \to p' \ q}}{\overline{\lambda x.p \xrightarrow{q} p[q/x]}}$$

$\lambda \lambda \cdot \rho \quad \gamma \quad \rho[q/\lambda]$

Oper. model $(B(X, Y)=Y+Y^X)$

$$\gamma \colon \Lambda \to B(\Lambda, \Lambda)$$

Oper. model (
$$B \colon \mathbb{C}^{\mathsf{op}} \! imes \! \mathbb{C} \to \mathbb{C}$$
)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

Untyped CBN λ -calculus

$\mathsf{Syntax} \,\, (\Sigma \colon \mathsf{Set}^{\mathcal{F}} \to \mathsf{Set}^{\mathcal{F}})$

$$p, q := x \mid pq \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{\overline{\lambda x.p \xrightarrow{q} p[q/x]}}{}$$

Oper. model $(B(X, Y)=Y+Y^X)$

$$\gamma \colon \mathsf{\Lambda} \to \mathsf{B}(\mathsf{\Lambda}, \mathsf{\Lambda})$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Higher-order GSOS law

$$\Sigma(X imes B(X,Y))$$

$$\downarrow^{\varrho_{X,Y}} \text{ dinat. in } X, \text{ nat. in } Y$$
 $B(X,\Sigma^*(X+Y))$

Oper. model ($B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

Untyped CBN λ -calculus

$\mathsf{Syntax} \; (\Sigma \colon \mathsf{Set}^{\mathcal{F}} \to \mathsf{Set}^{\mathcal{F}})$

$$p, q := x \mid pq \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{1}{\lambda x.p \xrightarrow{q} p[q/x]}$$

Oper. model $(B(X, Y)=Y+Y^X)$

$$\gamma \colon \mathsf{\Lambda} \to \mathsf{B}(\mathsf{\Lambda}, \mathsf{\Lambda})$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Higher-order GSOS law

$$\Sigma(X imes B(X,Y))$$

$$\downarrow^{\varrho_{X,Y}} \text{ dinat. in } X, \text{ nat. in } Y$$
 $B(X,\Sigma^*(X+Y))$

Oper. model (
$$B\colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$$
)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

Untyped CBN λ -calculus

$\mathsf{Syntax} \; (\Sigma \colon \mathsf{Set}^{\mathcal{F}} \to \mathsf{Set}^{\mathcal{F}})$

$$p, q := x \mid p q \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{\lambda x.p \xrightarrow{q} p[q/x]}{q}$$

Oper. model $(B(X, Y)=Y+Y^X)$

$$\gamma \colon \Lambda \to B(\Lambda, \Lambda)$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Higher-order GSOS law

$$\Sigma(X imes B(X, Y))$$

$$\downarrow^{\varrho_{X,Y}} \text{ dinat. in } X, \text{ nat. in } Y$$

$$B(X, \Sigma^*(X + Y))$$

Oper. model ($B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

Untyped CBN λ -calculus

$\mathsf{Syntax} \; (\Sigma \colon \mathsf{Set}^{\mathcal{F}} \to \mathsf{Set}^{\mathcal{F}})$

$$p, q := x \mid pq \mid \lambda x.p$$

Operational rules

$$\frac{p \to p'}{(\lambda x.p) \ q \to p[q/x]} \frac{p \to p'}{p \ q \to p' \ q}$$

$$\frac{\overline{\lambda x.p \xrightarrow{q} p[q/x]}}{\overline{\lambda x.p \xrightarrow{q} p[q/x]}}$$

Oper. model $(B(X, Y)=Y+Y^X)$

$$\gamma \colon \Lambda \to B(\Lambda, \Lambda)$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Higher-order GSOS law

$$\Sigma(X \times B(X, Y))$$

$$\downarrow^{\varrho_{X,Y}} \text{ dinat. in } X, \text{ nat. in } Y$$
 $B(X, \Sigma^*(X + Y))$

Oper. model ($B: \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

Untyped CBN λ -calculus

$\mathsf{Syntax} \,\, (\Sigma \colon \mathsf{Set}^{\mathcal{F}} \to \mathsf{Set}^{\mathcal{F}})$

$$p, q := x \mid pq \mid \lambda x.p$$

Operational rules

$$\frac{(\lambda x.p) q \to p[q/x]}{(\lambda x.p) q \to p[q/x]} \frac{p \to p'}{p q \to p' q}$$

$$\frac{\overline{\lambda x.p \xrightarrow{q} p[q/x]}}{}$$

Oper. model $(B(X, Y)=Y+Y^X)$

$$\gamma \colon \Lambda \to B(\Lambda, \Lambda)$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu \Sigma$

Higher-order GSOS law

$$\Sigma(X imes B(X,Y))$$

$$\downarrow^{\varrho_{X,Y}} \text{ dinat. in } X, \text{ nat. in } Y$$
 $B(X,\Sigma^*(X+Y))$

Oper. model ($B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

Categorical Abstraction

Syntax ($\Sigma \colon \mathbb{C} \to \mathbb{C}$)

Initial algebra $\mu\Sigma$

Instances:

- ▶ Untyped, typed
- ► CBN, CBV, CBPV
- ► Computational effects: nondeterminism, probabilities

Higher-order GSOS law

$$\Sigma(X \times B(X,Y))$$

$$\downarrow^{\varrho_{X,Y}} \text{ dinat. in } X, \text{ nat. in } Y$$
 $B(X,\Sigma^*(X+Y))$

Oper. model ($B \colon \mathbb{C}^{\mathsf{op}} \times \mathbb{C} \to \mathbb{C}$)

$$\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$$

This Talk

Generic, language-independent approach based on

Higher-Order Abstract GSOS

 \rightsquigarrow abstract bialgebraic theory of higher-order operational semantics.

Logical Relations (Untyped CBN λ -Calculus)

Step-indexed logical relation $\mathcal{L}_n \rightarrow \Lambda \times \Lambda \ (n \in \mathbb{N})$

$$\mathcal{L}_0(p,q)$$
 always, and $\mathcal{L}_{n+1}(p,q)$ iff $\mathcal{L}_n(p,q)$ and $p \to p' \implies \exists q'.\ q \to^\star q' \ \land \ \mathcal{L}_n(p',q')$ $p = \lambda x.p' \implies \exists q'.\ q \to^\star \lambda x.q' \ \land \ \forall \mathcal{L}_n(d,e).\ \mathcal{L}_n(p'[d/x],q'[e/x]).$ ("Related functions send related inputs to related outputs")

Logical Relations (Untyped CBN λ -Calculus)

Step-indexed logical relation $\mathcal{L}_n \rightarrow \Lambda \times \Lambda \ (n \in \mathbb{N})$

 $\mathcal{L}_0(p,q)$ always, and $\mathcal{L}_{n+1}(p,q)$ iff $\mathcal{L}_n(p,q)$ and

$$p \to p'$$
 $\Longrightarrow \exists q'. q \to^* q' \land \mathcal{L}_n(p', q')$

$$p = \lambda x.p' \quad \implies \exists q'.\ q \to^\star \lambda x.q' \ \land \ \forall \mathcal{L}_n(d,e).\ \mathcal{L}_n(p'[d/x],q'[e/x]).$$

("Related functions send related inputs to related outputs")

Soundness Theorem

$$[\forall n. \mathcal{L}_n(p,q) \wedge \mathcal{L}_n(q,p)] \implies p \approx_{\text{ctx}} q.$$

Congruence Theorem

Each $\mathcal{L}_n \rightarrowtail \Lambda \times \Lambda$ is a congruence, i.e. respected by language operations.

Logical Relations (Untyped CBN λ -Calculus)

Step-indexed logical relation $\mathcal{L}_n \rightarrow \Lambda \times \Lambda \ (n \in \mathbb{N})$

 $\mathcal{L}_0(p,q)$ always, and $\mathcal{L}_{n+1}(p,q)$ iff $\mathcal{L}_n(p,q)$ and

$$p \to p'$$
 $\Longrightarrow \exists q'. q \to^* q' \land \mathcal{L}_n(p', q')$

$$p = \lambda x.p' \quad \implies \exists q'.\ q \to^\star \lambda x.q' \ \land \ \forall \mathcal{L}_n(d,e).\ \mathcal{L}_n(p'[d/x],q'[e/x]).$$

("Related functions send related inputs to related outputs")

Soundness Theorem

$$[\forall n. \mathcal{L}_n(p,q) \wedge \mathcal{L}_n(q,p)] \implies p \approx_{\text{ctx}} q.$$

Congruence Theorem

Each $\mathcal{L}_n \rightarrowtail \Lambda \times \Lambda$ is a congruence, i.e. respected by language operations.

Key idea: Categorical abstraction via **relation liftings!**

Relation Liftings

 $\mathbf{Rel}(\mathbb{C})$: Cat. of relations $R \rightarrowtail X \times X$ and relation-preserving morphisms

A **relation lifting** of $B \colon \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$ is a bifunctor \overline{B} such that

$$\begin{array}{ccc} \operatorname{Rel}(\mathbb{C})^{\operatorname{op}} \times \operatorname{Rel}(\mathbb{C}) & \stackrel{\overline{B}}{\longrightarrow} & \operatorname{Rel}(\mathbb{C}) \\ \downarrow & & \downarrow \\ \mathbb{C}^{\operatorname{op}} \times \mathbb{C} & \stackrel{B}{\longrightarrow} & \mathbb{C} \end{array}$$

Relation Liftings

 $\mathbf{Rel}(\mathbb{C})$: Cat. of relations $R \rightarrowtail X \times X$ and relation-preserving morphisms

A **relation lifting** of $B \colon \mathbb{C}^{op} \times \mathbb{C} \to \mathbb{C}$ is a bifunctor \overline{B} such that

$$\mathsf{Rel}(\mathbb{C})^{\mathsf{op}} \times \mathsf{Rel}(\mathbb{C}) \xrightarrow{\overline{B}} \mathsf{Rel}(\mathbb{C})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{C}^{\mathsf{op}} \times \mathbb{C} \xrightarrow{B} \mathbb{C}$$

Example:
$$B(X, Y) = Y^X$$
 on Set

$$(R \subseteq X \times X, S \subseteq Y \times Y) \mapsto \overline{B}(R, S) \subseteq Y^X \times Y^X$$
 where

$$\overline{B}(R,S)(f,g)$$
 iff $\forall x, x'. R(x,x') \implies S(fx,gx')$

Logical Relations via Relation Liftings

Step-indexed logical relation $\mathcal{L}_n \rightarrow \Lambda \times \Lambda \ (n \in \mathbb{N})$

 $\mathcal{L}_0(p,q)$ always, and $\mathcal{L}_{n+1}(p,q)$ iff $\mathcal{L}_n(p,q)$ and

$$p \to p' \qquad \Longrightarrow \exists q'. \ q \to^* q' \ \land \ \mathcal{L}_n(p', q')$$
$$p = \lambda x. p' \qquad \Longrightarrow \exists q'. \ q \to^* \lambda x. q' \ \land \ \forall \mathcal{L}_n(d, e). \ \mathcal{L}_n(p'[d/x], q'[e/x]).$$

("Related functions send related inputs to related outputs")

Equivalently:
$$\mathcal{L}_{n+1} = \mathcal{L}_n \wedge (\gamma \times \widetilde{\gamma})^{-1} [\overline{\mathcal{B}}(\mathcal{L}_n, \mathcal{L}_n)]$$
 \rightarrow^* relation lifting

$$\mathsf{Rel}(\mathbb{C})^\mathsf{op} \times \mathsf{Rel}(\mathbb{C}) \xrightarrow{\overline{\mathcal{B}}} \mathsf{Rel}(\mathbb{C})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbb{C}^\mathsf{op} \times \mathbb{C} \xrightarrow{\mathcal{B}} \mathbb{C}$$

$$\mathcal{L}_{n+1} = \mathcal{L}_n \wedge (\gamma \times \widetilde{\gamma})^{-1} [\overline{B}(\mathcal{L}_n, \mathcal{L}_n)]$$

$$\xrightarrow{\rightarrow^*} \text{relation lifting}$$

$$\mathcal{L}_{n+1} = \mathcal{L}_n \wedge (\gamma \times \widetilde{\gamma})^{-1} [\overline{B}(\mathcal{L}_n, \mathcal{L}_n)]$$
 \rightarrow^* relation lifting

Congruence Theorem for Operational Model $\gamma\colon \mu\mathbf{\Sigma} o B(\mu\mathbf{\Sigma},\mu\mathbf{\Sigma})$

Each $\mathcal{L}_n \rightarrowtail \mu \Sigma \times \mu \Sigma$ is a congruence

if

the weak operational model $\widetilde{\gamma}$ is a lax higher-order bialgebra.

rules remain sound for weak transitions

$$\frac{p \to p'}{p \, q \to p' \, q} \quad \rightsquigarrow \quad \frac{p \to^* p'}{p \, q \to^* p' \, q}$$

cf. Bonchi, Petrișan, Pous, Rot, CONCUR'15

$$\mathcal{L}_{n+1} = \mathcal{L}_n \wedge (\gamma \times \widetilde{\gamma})^{-1} [\overline{B}(\mathcal{L}_n, \mathcal{L}_n)]$$

$$\to^* \qquad \text{relation lifting}$$

Congruence Theorem for Operational Model $\gamma\colon \mu\mathbf{\Sigma} o B(\mu\mathbf{\Sigma}, \mu\mathbf{\Sigma})$

Each
$$\mathcal{L}_n \rightarrowtail \mu \Sigma \times \mu \Sigma$$
 is a congruence if

the weak operational model $\widetilde{\gamma}$ is a lax higher-order bialgebra.

$$\mathcal{L}_{n+1} = \mathcal{L}_n \wedge (\gamma \times \widetilde{\gamma})^{-1} [\overline{B}(\mathcal{L}_n, \mathcal{L}_n)]$$

$$\to^* \qquad \text{relation lifting}$$

Congruence Theorem for Operational Model $\gamma\colon \mu\Sigma o B(\mu\Sigma, \mu\Sigma)$

Each
$$\mathcal{L}_n \rightarrowtail \mu \Sigma \times \mu \Sigma$$
 is a congruence if

the weak operational model $\widetilde{\gamma}$ is a lax higher-order bialgebra.

► Corollary: Soundness for abstract contextual equivalence (see paper).

$$\mathcal{L}_{n+1} = \mathcal{L}_n \wedge (\gamma \times \widetilde{\gamma})^{-1} [\overline{B}(\mathcal{L}_n, \mathcal{L}_n)]$$

$$\to^* \qquad \text{relation lifting}$$

Congruence Theorem for Operational Model $\gamma\colon \mu\mathbf{\Sigma} o B(\mu\mathbf{\Sigma}, \mu\mathbf{\Sigma})$

Each
$$\mathcal{L}_n \rightarrowtail \mu \Sigma \times \mu \Sigma$$
 is a congruence if

the weak operational model $\widetilde{\gamma}$ is a lax higher-order bialgebra.

- ► Corollary: Soundness for abstract contextual equivalence (see paper).
- ▶ Lax bialg. condition: isolates language-specific core + easy to check.

$$\mathcal{L}_{n+1} = \mathcal{L}_n \wedge (\gamma \times \widetilde{\gamma})^{-1} [\overline{B}(\mathcal{L}_n, \mathcal{L}_n)]$$

$$\to^* \qquad \text{relation lifting}$$

Congruence Theorem for Operational Model $\gamma \colon \mu \Sigma \to B(\mu \Sigma, \mu \Sigma)$

Each
$$\mathcal{L}_n \rightarrowtail \mu \Sigma \times \mu \Sigma$$
 is a congruence if

the weak operational model $\widetilde{\gamma}$ is a lax higher-order bialgebra.

- ► Corollary: Soundness for abstract contextual equivalence (see paper).
- ▶ Lax bialg. condition: isolates language-specific core + easy to check.
- ▶ **Related:** Soundness of applicative similarity, Howe's method [LICS'23].

Perspectives [→ **Poster Session**]

