Higher-Order Program Equivalence

in the Abstract

Sergey Goncharov

FAU Erlangen-Nirnberg

Chair of Theoretical Computer Science, University of Regensburg, May 23, 2024

HO GSOS Semantics Unravelling

@ Goncharov, Milius, Schroder, Tsampas, and Urbat, “Towards a
Higher-Order Mathematical Operational Semantics”, POPL 2023

@ Urbat, Tsampas, Goncharov, Milius, and Schroder, “Weak Similarity in
Higher-Order Mathematical Operational Semantics”, LICS 2023

@ Goncharov, Santamaria, Schroder, Tsampas, and Urbat, “Logical
Predicates in Higher-Order Mathematical Operational Semantics”,
FoSSaCS 2024

@ Goncharov, Milius, Tsampas, and Urbat, “Bialgebraic Reasoning on
Higher-Order Program Equivalence”, LICS 2024

HO GSOS Semantics Unravelling

@ Goncharov, Milius, Schroder, Tsampas, and Urbat, “Towards a
Higher-Order Mathematical Operational Semantics”, POPL 2023

@ Urbat, Tsampas, Goncharov, Milius, and Schroder, “Weak Similarity in
Higher-Order Mathematical Operational Semantics”, LICS 2023

@ Goncharov, Santamaria, Schroder, Tsampas, and Urbat, “Logical
Predicates in Higher-Order Mathematical Operational Semantics”,
FoSSaCS 2024

@ Goncharov, Milius, Tsampas, and Urbat, “Bialgebraic Reasoning on
Higher-Order Program Equivalence”, LICS 2024 6

Higher-Order Operational

Semantics

Semantics First (!)

@ Why care about semantics and about quality of semantics?

Q'g Implementation (< operational semantics)
G Verification (< logical semantics)

M Optimization (< denotational semantics)

But also
m Certified correctness
m Secure compilation
m Modelling and simulation
m Language design (Haskell, Scala, Coq, Agda,...)

m Transferring knowledge across domains

Operational v.s. Denotational

m Operational Semantics (how programs behave?)

s(s(0)) +s(s(0)) — s(s(0) +s(s(0)))

— s(s(0 +s(s(0)))) — s(s(s(s(0))))
m Denotational Semantics (what programs denote?)

[s(s(0)) +s(s(0))] = [s(s(0))] + [s(s(@))] =2+2 =4

Semantics in Use

Denotational:
@ Compositional by design:

Ipl = [ql = [Clp]] = [Clq]]

for any program context C
@ Mathematically rigorous and precise

® Ease to define: from hard to impossible

Operational:

@ Lightweight and easy to define even for complex languages
® Nonuniform and fraggile

® Hard to reason about (because of lack of compisitionality)

a4 21

Semantics in Use

Denotational:
@ Compositional by design:

Ipl = [ql = [Clp]] = [Clq]]

for any program context C
@ Mathematically rigorous and precise

® Ease to define: from hard to impossible

Operational:

@ ’ Lightweight and easy to define even for complex languages

® Nonuniform and fraggile

® Hard to reason about (because of lack of compisitionality)

a4 21

Call-by-Name (Lazy) A-calculus

m Operational (small-step, call-by-name) semantics rules
PP
(Ax.p)q — plg/x] Pq —p'q

» involved terms (=programs) are closed (!)

Call-by-Name (Lazy) A-calculus

m Operational (small-step, call-by-name) semantics rules
PP
(Ax.p)q — plg/x] Pq —p'q

» involved terms (=programs) are closed (!)

m Values v are irreducible closed terms: v t for any t

» Example: | .= Ax. x - value, Q := (Ax. xx)(Ax. xx) - non-value

Call-by-Name (Lazy) A-calculus

m Operational (small-step, call-by-name) semantics rules
PP
(Ax.p)q — plg/x] Pq —p'q

» involved terms (=programs) are closed (!)

m Values v are irreducible closed terms: v t for any t

» Example: | .= Ax. x - value, Q := (Ax. xx)(Ax. xx) - non-value

m Termination: t | = “t —* v for some value v"

Call-by-Name (Lazy) A-calculus

m Operational (small-step, call-by-name) semantics rules
PP
(Ax.p)q — plg/x] Pq —p'q

» involved terms (=programs) are closed (!)

m Values v are irreducible closed terms: v t for any t

» Example: | .= Ax. x - value, Q := (Ax. xx)(Ax. xx) - non-value
m Termination: t | = “t —* v for some value v"

m Contextual preorder: s <q tif C[s]] implies C[t]] for all contexts C

» Example: f <qx AX.fx (how to prove it?)

Call-by-Name (Lazy) A-calculus

m Operational (small-step, call-by-name) semantics rules
PP
(Ax.p)q — plg/x] Pq —p'q

» involved terms (=programs) are closed (!)

m Values v are irreducible closed terms: v t for any t

» Example: | .= Ax. x - value, Q := (Ax. xx)(Ax. xx) - non-value
m Termination: t | = “t —* v for some value v"

m Contextual preorder: s <q tif C[s]] implies C[t]] for all contexts C

» Example: f <qx AX.fx (how to prove it?)

m Contextual equivalence: s ~¢, tif s Scxtand t Scix S

> Example: f 2% AX. fX, because Ax. Ox £qx Q

Scalling Up: Higher-Order Operational Semantics

Aspects that add/vary:

m Evaluation strategy (call-by-name v.s. call-by-value)

m Types ~ other notions of contextual equivalence

m Computational effects (non-determinism, exceptions, store, . . .)
m Other language features (recursive types, type constructors,

polymorphism)

Operational Methods are complicated, fragile and boilerplate

@ Can we build a mathematical theory of higher-order operational

semantics, abstracting and unifying these methods?

Higher-Order Abstract GSOS

A Bit of Category Theory

From the programming perspective:

m (Endo-)functor is a type constructur, e.g. FX = X x X

m Natural transformation «: F — G is a polymorphic function

oax: FX — GX,e.g.swap: X x X > X x X

m Algebraisamap a: FX — X, e.g. the free algebra of X-terms
X(Z*X) — X*X over variables X

m Coalgebrais amap c: X — FX, e.g. a labelled transition system
X — P(A x X)

First-Order Abstract GSOS

Turi and Plotkin’s abstraction of GSOS rule format?:

m Signature endo-functor X
m Behaviour endo-functor B
m GSOS law - natural transformation px: (X x BX) — B(Z*X)

Example (Process Algebra):
mX={|/2,0/0tu{a. (-)/1]acA}
m BX = P(A x X)
m GSOS law encodes rules like:
p=p
pla >p'lq

LTuri and Plotkin, “Towards a Mathematical Operational Semantics”.

- s8]

First-Order Abstract GSOS

Turi and Plotkin’s abstraction of GSOS rule format?:

m Signature endo-functor X
m Behaviour endo-functor B
m GSOS law - natural transformation py: Z(X x BX) — B(X*X)

Example (Process Algebra):
mX={]/2,0/0tu{a.(-)/1]|aecA}
m BX = P(A x X)
m GSOS law encodes rules like: behaviour from B
pSp

operation from)y - a —
plg Sp'lq

LTuri and Plotkin, “Towards a Mathematical Operational Semantics”.

- s8]

First-Order Abstract GSOS

Turi and Plotkin’s abstraction of GSOS rule format?:

m Signature endo-functor X
m Behaviour endo-functor B
m GSOS law - natural transformation py: Z(X x B X) — B(Z*X)

Example (Process Algebra):
mI={|/20/0tu{a(-)/1]aeA}
m BX = P(A x X)
m GSOS law encodes rules like:
p>p
plg Splq

LTuri and Plotkin, “Towards a Mathematical Operational Semantics”.

First-Orded GSOS

Theory of first-order GSOS takes %, B, p as input parameters, and

produces

@ operational semantics y: £*() — B(X*()) (operational model)
@ notion of program equivalence ~ < *() x £*() (strong bisimilarity)

@ generic compositionality: p ~ g = C[p] ~ Clq] for any context
But

® ~ is too fine-grained for programming languages

® first-order < higher-order ~+ no A-calculus

First-Orded GSOS

Theory of first-order GSOS takes %, B, p as input parameters, and

produces

@ operational semantics y: £*() — B(X*()) (operational model)
@ notion of program equivalence ~ < *() x £*() (strong bisimilarity)

@ generic compositionality: p ~ g = C[p] ~ Clq] for any context
But

® ~ is too fine-grained for programming languages

® first-order < higher-order ~+ no A-calculus (-

(Call-by-Name Extended) Combinatory Logic

m K (=Ap.A\g.p)

B S(=ApAGAr.(p-r)-(q-r))
m plus S/, S” and K’ for partially reduced terms

K% Kp Kp >p sSSP sp >s"pq
q /

p—p p—p
s”(p, L .r) - .r

» Example: Spqr — S'(p)qr — S”(p, q)r — (pr)(qr)

m This is very similar to original GSOS, but it is not

(Call-by-Name Extended) Combinatory Logic

m K (=Ap.A\g.p)

B S(=ApAGAr.(p-r)-(q-r))
m plus S/, S” and K’ for partially reduced terms

K% Kp Kp >p sSSP sp >s"pq
p—p p-p

S"(p,q) > (p-r)-(q-r !

» Example: Spqr — S'(p)qr — S”(p, q)r — (pr)(qr)

m This is very similar to original GSOS, but it is not

Higher-Order Abstract GSOS

A higher-order GSOS law consists of

m Signature =

m Mixed variance (!) behaviour functor B

m Family of maps pxy: (X x B(X,Y)) — B(X, Z*(X + Y)) natural in Y
and dinatural in X

Example: For combinatory logic: B(X,Y) = YX + Y, p is induced by rules

@ Most of Turi and Plotkin's theory caries over

® Program equivalence is strong applicative bisimilarity - still too
fine-grained

Applicative Bisimilarity

So, how can we prove contextual equivalence/inequality anyway?

One approach: weak (applicative) bisimilarity as a sound proof method:

1. Let = = (%), L= (= - i>) and define weak bisimilarity as

strong bisimilarity for =
2. Prove that ensuing similarity relation < is a congruence (hard)

3. Derive that < € <. (easy)

Example: for combinarory logic: t < s if

mt— t'impliess »*s’andt’ < s’ for somes’

mt. t impliess = s’andt’ < s’ for some s’
Showmgf <ax S+) - f (analogue of f <.t AX. fX) reduces to showing
f<sS-(K-I)-f, Whlch is easy

Ground Contexts

m Recently? we identified conditions on X, B, p, and category, enabling
weak applicative (bi-)similarity as an abstract sound method

» Hard part: proving congruence ~» categorical Howe's method

m But this would not work for the following flavour of contextual

preorder in typed setting:
s<Poolt if Cls]L=C[) forall C:bool

Now: f ~%l\x fx — f:= Q does not break it!

m This can be resolved with (step-indexed) logical relations!

2Urbat, Tsampas, Goncharov, Milius, and Schréder, “Weak Similarity in Higher-Order Mathematica

Step-Indexing in the Abstract

Step-Indexing for Combinatory Logic

The step-indexed logical relation £ for combinatory logic is the
inductively defined family (£L* € Z*0 x 2*0) q<w:

L0 =T, LT = L0 A ELT) AV(L" L), L¥=) £

h<w

where € and V are relation transformers:

E(R) ={(t,s) |ift >t then3Is’.s=s" A R(t' s")}
V(Q,R) ={(t,s) | forall ry, ry, Q(ry, 12),

ift 5 t'then3ds’.s = s’ A R(t/,s')}

As a slogan: "related programs applied to related arguments produce

related results"

Step-Indexing for Combinatory Logic: Use

B L@ isafixpoint L& = L& A E(LW) A V(L®, L@)

m In first-order case we would reduce to the familiar fixpoint theory
and Kleene/Knaster-Tarski theorems, but because of higher-order,

we generally do not (!)
m Every £ is a congruence

m L® is sound for contextual preorder: £L*(s, t) implies s <S¢ t

Example: We can reprove f <« S (K- 1) - f, by showing by induction on n
that £"(t,S- (K- 1) - f) whenever f =t

Contextual Preorders in the Abstract

m Given a preorder O < X*() x X*(), a relation R < Z*() x Z*() is
O-adequate if R< O

m The greatest O-adequate congruence is the contextual preorder
w.r.t. 0 and denoted <©

> If 0 ={(t,s) | t} = 51} then <° = Sc

Theorem: under general conditions <° exists and is a preorder

Step-Indexing in the Abstract

Additional parameters:

1. Coalgebray: Z*() — B(Z*(), *0) abstracting weak transitions ‘="'

(additionally to the automatic coalgebra y of strong transitions ‘—)

2. Relation lifting of B, i.e. its action on relations

Results: under general assumptions,
1. There is an abstract (ordinal-indexed) logical relation (O%T),,
2. Thelimit O¥T =), O*T exists
3. Every O%T is a congruence
4. If OV T is O-adequate then OV T < <©

Ground Contextual Equivalence Revisited

m By redefining weak transitions t L svia
@At t=t' At/ L s)v(@t.t=t As=t'r)

we obtain a different logical relation OT

m By taking

Oboot ={(t,S5) | tl = s|} and O.=T for T+ bool

we obtain the ground contextual preorder <29l = <©

m OV T is O-adequate, hence OV T < <bo!

Proving the “n-Law”

mRecalit>s= (Tt t=t' At/ L s)v (@t t=t aAs=t'r)

LM =LA~ ELN) A VL™, LM
(LM ={(t,s) |ift > t' thenIs’.s =s" A L"(t',s)}
V(L", L") ={(t,s) | forall ry, ry, £L"(ry,15),
ift o t'then3ds’.s = s’ A L"(t),s')}

m Proof of L"(S- (K- 1) - f,f) by induction on n, in particular:

S fﬁSKlfﬁS”Klf (K-1-1) ftﬁft
Lv‘n L"’1 Ln—z Lnfs Ln—ﬁ
I I I I I
f f f 4 ft/:>ft’

Conclusions

Our present construction of OT and results are highly flexible and cover

m varios choices of the underlying category (e.g. category of
presheaves for A-calculus)
m type constructors and recursive types

m nondeterminism
Further Work:

Call-by-value

Metric, probabilistic, quantialic, fibrational generalizations

|
|
m Modelling polymorphic languages
m Modelling effectful languages

|

OT is included applicative bisimilarity. When they are equal?

Thank You for Your Attention!

Higher-Order Abstract GSOS

Categorical Framework for Higher-Order Operational Semantics

Language Behaviour HO Specification in GSOS Format
Signature = Endofunctor £: C—~Con a Behaviour = Mixed-variance functor o
category C, e.g.: B:C®?xC—C, eg.: | e]
+ C=Set, 2= (0/0,;/0, +/2,-/2} « B(X,¥) = YX + ¥ (deterministic) ot e
+C="“nominal sets”, EX =A+[A]X + X x X * B(X,Y) = 2,(Y* +Y) (non-deterministic) — Distributive law p of = over B

\ 3 /

Higher-Order Bialgebraic Semantics

Transition semantics is a unique solution y: yuX — B(uZ, puX):

o S ~ ux
s v i Y B(Z,puz) Cpa_lg§bra.|c notlon qf.strong applicative -
bisimilarity ~ on initial =-algebra px l lwl(y
=,y Bid) = it
7 l) . I 0 (=algebra of programs) as a pullback uz coity V. BUEY)
Z(UZ x B(uZ,p3) —> B(uZ,Z*(UZ+pZ) —— B(uZ,Z*pz)

Central Resu

Compositionality for Free
Under certain general assumptions,

s a congruence

@ Goncharov, Sergey, Stefan Milius, Lutz Schréder, Stelios Tsampas, and
Henning Urbat. “Towards a Higher-Order Mathematical Operational
Semantics”. In: Proc. ACM Program. Lang. 7 (2023), pp. 632-658. doi:
10.1145/3571215.

@ Goncharov, Sergey, Stefan Milius, Stelios Tsampas, and
Henning Urbat. “Bialgebraic Reasoning on Higher-Order Program
Equivalence”. In: LICS. 2024, pp. 1-13.

https://doi.org/10.1145/3571215

@ Goncharov, Sergey, Alessio Santamaria, Lutz Schroder,
Stelios Tsampas, and Henning Urbat. “Logical Predicates in
Higher-Order Mathematical Operational Semantics”. In: Foundations of
Software Science and Computation Structures - 27th International
Conference, FoSSaCS 2024, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2024,
Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part Il.
Ed. by Naoki Kobayashi and James Worrell. Vol. 14575. Lecture Notes
in Computer Science. Springer, 2024, pp. 47-69. doi:
10.1007/978-3-031-57231-9_3. url:
https://doi.org/10.1007/978-3-031-57231-9_3.

https://doi.org/10.1007/978-3-031-57231-9_3
https://doi.org/10.1007/978-3-031-57231-9_3

@ Turi, D. and G. Plotkin. “Towards a Mathematical Operational
Semantics”. In: Logic in Computer Science. |IEEE. 1997, pp. 280-291.

@ Urbat, Henning, Stelios Tsampas, Sergey Goncharov, Stefan Milius,
and Lutz Schroder. “Weak Similarity in Higher-Order Mathematical
Operational Semantics”. In: LICS. 2023, pp. 1-13. doi:
10.1109/LICS56636.2023.101757066. url:
https://doi.org/10.1109/LICS56636.2023.10175706.

https://doi.org/10.1109/LICS56636.2023.10175706
https://doi.org/10.1109/LICS56636.2023.10175706

	Higher-Order Operational Semantics
	Higher-Order Abstract GSOS
	Step-Indexing in the Abstract
	Appendix

