Higher-Order Program Equivalence in the Abstract

Sergey Goncharov

FAU Erlangen-Nürnberg

Chair of Theoretical Computer Science, University of Regensburg, May 23, 2024

HO GSOS Semantics Unravelling

- Goncharov, Milius, Schröder, Tsampas, and Urbat, "Towards a Higher-Order Mathematical Operational Semantics", POPL 2023
- Urbat, Tsampas, Goncharov, Milius, and Schröder, "Weak Similarity in Higher-Order Mathematical Operational Semantics", LICS 2023
- Goncharov, Santamaria, Schröder, Tsampas, and Urbat, "Logical Predicates in Higher-Order Mathematical Operational Semantics", FoSSaCS 2024
- Goncharov, Milius, Tsampas, and Urbat, "Bialgebraic Reasoning on Higher-Order Program Equivalence", LICS 2024

1 | 21

HO GSOS Semantics Unravelling

- Goncharov, Milius, Schröder, Tsampas, and Urbat, "Towards a Higher-Order Mathematical Operational Semantics", POPL 2023
- Urbat, Tsampas, Goncharov, Milius, and Schröder, "Weak Similarity in Higher-Order Mathematical Operational Semantics", LICS 2023
- Goncharov, Santamaria, Schröder, Tsampas, and Urbat, "Logical Predicates in Higher-Order Mathematical Operational Semantics", FoSSaCS 2024
- Goncharov, Milius, Tsampas, and Urbat, "Bialgebraic Reasoning on Higher-Order Program Equivalence", LICS 2024

Higher-Order Operational

Semantics

Semantics First (!)

- Why care about semantics and about quality of semantics?
- Implementation (← operational semantics)
- Verification (← logical semantics)
- Optimization (← denotational semantics)

But also

- Certified correctness
- Secure compilation
- Modelling and simulation
- Language design (Haskell, Scala, Coq, Agda,...)
- Transferring knowledge across domains

Operational v.s. Denotational

■ Operational Semantics (how programs behave?)

$$\begin{split} s(s(o)) + s(s(o)) &\rightarrow s(s(o) + s(s(o))) \\ &\rightarrow s(s(o + s(s(o)))) &\rightarrow s(s(s(s(o)))) \end{split}$$

■ Denotational Semantics (what programs denote?)

$$[s(s(O)) + s(s(O))] = [s(s(O))] + [s(s(O))] = 2 + 2 = 4$$

3 | 21

Semantics in Use

Denotational:

Compositional by design:

$$[\![p]\!] = [\![q]\!] \Rightarrow [\![C[p]]\!] = [\![C[q]]\!]$$

for any program context C

- Mathematically rigorous and precise
- Ease to define: from hard to impossible

Operational:

- Lightweight and easy to define even for complex languages
- Nonuniform and fraggile
- Hard to reason about (because of lack of compisitionality)

Semantics in Use

Denotational:

© Compositional by design:

$$[\![p]\!] = [\![q]\!] \Rightarrow [\![C[p]]\!] = [\![C[q]]\!]$$

for any program context C

- Mathematically rigorous and precise
- Ease to define: from hard to impossible

Operational:

- © Lightweight and easy to define even for complex languages
- Nonuniform and fraggile
- Hard to reason about (because of lack of compisitionality)

Operational (small-step, call-by-name) semantics rules

$$\frac{p \to p'}{(\lambda x. \, p)q \to p[q/x]} \qquad \qquad \frac{p \to p'}{pq \to p'q}$$

▶ involved terms (=programs) are closed (!)

Operational (small-step, call-by-name) semantics rules

$$\frac{p \to p'}{(\lambda x. p)q \to p[q/x]} \qquad \frac{p \to p'}{pq \to p'q}$$

- ► involved terms (=programs) are closed (!)
- Values v are irreducible closed terms: $v \rightarrow t$ for any t
 - **Example:** $I := \lambda x. x$ value, $\Omega := (\lambda x. xx)(\lambda x. xx)$ non-value

Operational (small-step, call-by-name) semantics rules

$$\frac{p \to p'}{(\lambda x. p)q \to p[q/x]} \qquad \frac{p \to p'}{pq \to p'q}$$

- ► involved terms (=programs) are closed (!)
- Values v are irreducible closed terms: $v \rightarrow t$ for any t
 - **Example:** $I := \lambda x. x$ value, $\Omega := (\lambda x. xx)(\lambda x. xx)$ non-value
- Termination: $t \downarrow = "t \rightarrow^* v$ for some value v"

Operational (small-step, call-by-name) semantics rules

$$\frac{p \to p'}{(\lambda x. p)q \to p[q/x]} \qquad \frac{p \to p'}{pq \to p'q}$$

- ▶ involved terms (=programs) are closed (!)
- Values v are irreducible closed terms: $v \rightarrow t$ for any t
 - **Example:** $I := \lambda x. x$ value, $\Omega := (\lambda x. xx)(\lambda x. xx)$ non-value
- Termination: $t \downarrow = "t \rightarrow^* v$ for some value v"
- Contextual preorder: $s \lesssim_{ctx} t$ if $C[s] \downarrow$ implies $C[t] \downarrow$ for all contexts $C[t] \downarrow$
 - **Example:** $f \lesssim_{ctx} \lambda x. fx$ (how to prove it?)

Call-by-Name (Lazy) λ -calculus

Operational (small-step, call-by-name) semantics rules

$$\frac{p \to p'}{(\lambda x. p)q \to p[q/x]} \qquad \frac{p \to p'}{pq \to p'q}$$

- ▶ involved terms (=programs) are closed (!)
- Values v are irreducible closed terms: $v \rightarrow t$ for any t
 - **Example:** $I := \lambda x. x$ value, $\Omega := (\lambda x. xx)(\lambda x. xx)$ non-value
- Termination: $t \downarrow = "t \rightarrow^* v$ for some value v"
- Contextual preorder: $s \lesssim_{ctx} t$ if $C[s] \downarrow$ implies $C[t] \downarrow$ for all contexts $C[t] \downarrow$
 - **Example:** $f \lesssim_{ctx} \lambda x. fx$ (how to prove it?)
- Contextual equivalence: $s \simeq_{ctx} t$ if $s \lesssim_{ctx} t$ and $t \lesssim_{ctx} s$
 - **Example:** $f \not\simeq_{ctx} \lambda x. fx$, because $\lambda x. \Omega x \lesssim_{ctx} \Omega$

Scalling Up: Higher-Order Operational Semantics

Aspects that add/vary:

- Evaluation strategy (call-by-name v.s. call-by-value)
- Types ~> other notions of contextual equivalence
- Computational effects (non-determinism, exceptions, store, ...)
- Other language features (recursive types, type constructors, polymorphism)

Operational Methods are complicated, fragile and boilerplate

② Can we build a mathematical theory of higher-order operational semantics, abstracting and unifying these methods?

Higher-Order Abstract GSOS

A Bit of Category Theory

From the programming perspective:

- **(Endo-)functor** is a type constructur, e.g. $FX = X \times X$
- Natural transformation α : $F \to G$ is a polymorphic function α_X : $FX \to GX$, e.g. swap: $X \times X \to X \times X$
- Algebra is a map $a: FX \to X$, e.g. the free algebra of Σ -terms $\Sigma(\Sigma^*X) \to \Sigma^*X$ over variables X
- Coalgebra is a map $c: X \to FX$, e.g. a labelled transition system $X \to \mathcal{P}(A \times X)$

First-Order Abstract GSOS

Turi and Plotkin's abstraction of GSOS rule format¹:

- Signature endo-functor Σ
- Behaviour endo-functor B
- GSOS law natural transformation ρ_X : $\Sigma(X \times BX) \to B(\Sigma^*X)$

Example (Process Algebra):

- $\Sigma = \{ | /2, \emptyset/0 \} \cup \{ a. (-)/1 | a \in A \}$
- \blacksquare $BX = \mathcal{P}(A \times X)$
- GSOS law encodes rules like:

$$\frac{p \stackrel{a}{\rightarrow} p'}{p \mid q \stackrel{a}{\rightarrow} p' \mid q}$$

¹Turi and Plotkin, "Towards a Mathematical Operational Semantics".

First-Order Abstract GSOS

Turi and Plotkin's abstraction of GSOS rule format¹:

- Signature endo-functor Σ
- Behaviour endo-functor B
- GSOS law natural transformation ρ_X : $\Sigma(X \times BX) \to B(\Sigma^*X)$

Example (Process Algebra):

■
$$\Sigma = \{ | /2, \emptyset/0 \} \cup \{ a. (-)/1 | a \in A \}$$

$$\blacksquare$$
 $BX = \mathcal{P}(A \times X)$

■ GSOS law encodes rules like:

behaviour from B

operation from
$$\Sigma$$

$$\frac{p \xrightarrow{a} p'}{p \mid q \xrightarrow{a} p' \mid q}$$

¹Turi and Plotkin, "Towards a Mathematical Operational Semantics".

First-Order Abstract GSOS

Turi and Plotkin's abstraction of GSOS rule format¹:

- Signature endo-functor Σ
- Behaviour endo-functor B
- GSOS law natural transformation ρ_X : $\Sigma(X \times BX) \to B(\Sigma^*X)$

Example (Process Algebra):

■
$$\Sigma = \{ | /2, \emptyset/O \} \cup \{a. (-)/1 | a \in A \}$$

$$\blacksquare$$
 $BX = \mathcal{P}(A \times X)$

GSOS law encodes rules like:

$$\frac{p \stackrel{a}{\rightarrow} p'}{p \mid q \stackrel{a}{\rightarrow} p' \mid q}$$

¹Turi and Plotkin, "Towards a Mathematical Operational Semantics".

First-Orded GSOS

Theory of first-order GSOS takes Σ , B, ρ as input parameters, and produces

- \bigcirc operational semantics $\gamma \colon \Sigma^* \emptyset \to B(\Sigma^* \emptyset)$ (operational model)
- \bigcirc notion of program equivalence $\sim \subseteq \Sigma^*\emptyset \times \Sigma^*\emptyset$ (strong bisimilarity)
- \bigcirc generic compositionality: $p \sim q \Rightarrow C[p] \sim C[q]$ for any context

But

- \odot ~ is too fine-grained for programming languages
- \bigcirc first-order \subsetneq higher-order \rightsquigarrow no λ -calculus

First-Orded GSOS

Theory of first-order GSOS takes Σ , B, ρ as input parameters, and produces

- \odot operational semantics $\gamma \colon \Sigma^* \emptyset \to B(\Sigma^* \emptyset)$ (operational model)
- \odot notion of program equivalence $\sim \subseteq \Sigma^*\emptyset \times \Sigma^*\emptyset$ (strong bisimilarity)
- \bigcirc generic compositionality: $p \sim q \Rightarrow C[p] \sim C[q]$ for any context

But

- \sim is too fine-grained for programming languages
- \Leftrightarrow first-order \subseteq higher-order \rightsquigarrow no λ -calculus

(Call-by-Name Extended) Combinatory Logic

- \blacksquare $K (= \lambda p. \lambda q. p)$
- \blacksquare $S (= \lambda p. \lambda q. \lambda r. (p \cdot r) \cdot (q \cdot r))$
- \blacksquare plus S', S'' and K' for partially reduced terms

$$\begin{split} & K \xrightarrow{p} K'(p) & K'(p) \xrightarrow{q} p & S \xrightarrow{p} S'(p) & S'(p) \xrightarrow{q} S''(p,q) \\ & S''(p,q) \xrightarrow{r} (p \cdot r) \cdot (q \cdot r) & \frac{p \to p'}{p \cdot q \to p' \cdot q} & \frac{p \xrightarrow{q} p'}{p \cdot q \to p'} \end{split}$$

- ► Example: $Spqr \rightarrow S'(p)qr \rightarrow S''(p,q)r \rightarrow (pr)(qr)$
- This is very similar to original GSOS, but it is not

(Call-by-Name Extended) Combinatory Logic

- \blacksquare $K (= \lambda p. \lambda q. p)$
- \blacksquare $S (= \lambda p. \lambda q. \lambda r. (p \cdot r) \cdot (q \cdot r))$
- \blacksquare plus S', S'' and K' for partially reduced terms

$$K \xrightarrow{p} K'(p) \qquad K'(p) \xrightarrow{q} p \qquad S \xrightarrow{p} S'(p) \qquad S'(p) \xrightarrow{q} S''(p,q)$$
$$S''(p,q) \xrightarrow{r} (p \cdot r) \cdot (q \cdot r) \qquad \frac{p \to p'}{p \cdot q \to p' \cdot q} \qquad \frac{p \xrightarrow{q} p'}{p \cdot q \to p'} \quad \blacksquare$$

- ► Example: $Spqr \rightarrow S'(p)qr \rightarrow S''(p,q)r \rightarrow (pr)(qr)$
- This is very similar to original GSOS, but it is not

Higher-Order Abstract GSOS

A higher-order GSOS law consists of

- Signature ∑
- Mixed variance (!) behaviour functor B
- Family of maps $\rho_{X,Y}$: $\Sigma(X \times B(X,Y)) \to B(X,\Sigma^*(X+Y))$ natural in Y and dinatural in X

Example: For combinatory logic: $B(X, Y) = Y^X + Y$, ρ is induced by rules

- (2) Most of Turi and Plotkin's theory caries over
- Program equivalence is strong applicative bisimilarity still too fine-grained

Applicative Bisimilarity

So, how can we prove contextual equivalence/inequality anyway?

One approach: weak (applicative) bisimilarity as a sound proof method:

- 1. Let $\Rightarrow := (\rightarrow^*), \stackrel{t}{\Rightarrow} := (\Rightarrow \cdot \stackrel{t}{\rightarrow})$ and define weak bisimilarity as strong bisimilarity for \Rightarrow
- 2. Prove that ensuing similarity relation \lesssim is a congruence (hard)
- 3. Derive that $\lesssim \subseteq \lesssim_{ctx}$ (easy)

Example: for combinarory logic: $t \lesssim s$ if

- $t \rightarrow t'$ implies $s \rightarrow^* s'$ and $t' \lesssim s'$ for some s'
- $t \xrightarrow{r} t'$ implies $s \stackrel{r}{\Rightarrow} s'$ and $t' \lesssim s'$ for some s'

Showing $f \lesssim_{ctx} S \cdot (K \cdot I) \cdot f$ (analogue of $f \lesssim_{ctx} \lambda x. fx$) reduces to showing $f \lesssim S \cdot (K \cdot I) \cdot f$, which is easy

2 | 21

Ground Contexts

- Recently² we identified conditions on Σ , B, ρ , and category, enabling weak applicative (bi-)similarity as an abstract sound method
 - ► Hard part: proving congruence ~> categorical Howe's method
- But this would not work for the following flavour of contextual preorder in typed setting:

$$s\lesssim_{ctx}^{bool} t \qquad \text{if} \qquad C[s]\!\downarrow \Rightarrow C[t]\!\downarrow \quad \text{for all} \quad C\colon bool$$

Now: $f \simeq_{ctx}^{bool} \lambda x. fx - f := \Omega$ does not break it!

■ This can be resolved with (step-indexed) logical relations!

²Urbat, Tsampas, Goncharov, Milius, and Schröder, "Weak Similarity in Higher-Order Mathematica

Step-Indexing in the Abstract

Step-Indexing for Combinatory Logic

The step-indexed logical relation \mathcal{L} for combinatory logic is the inductively defined family $(\mathcal{L}^{\alpha} \subseteq \Sigma^{\star}\emptyset \times \Sigma^{\star}\emptyset)_{\alpha \leqslant \omega}$:

$$\mathcal{L}^{0} = \top, \qquad \mathcal{L}^{n+1} = \mathcal{L}^{n} \cap \mathcal{E}(\mathcal{L}^{n}) \cap \mathcal{V}(\mathcal{L}^{n}, \mathcal{L}^{n}), \qquad \mathcal{L}^{\omega} = \bigcap_{n < \omega} \mathcal{L}^{n}$$

where \mathcal{E} and \mathcal{V} are relation transformers:

$$\mathcal{E}(R) = \{(t,s) \mid \text{if } t \to t' \text{ then } \exists s'.s \Rightarrow s' \land R(t',s')\}$$

$$\mathcal{V}(Q,R) = \{(t,s) \mid \text{for all } r_1, r_2, \ Q(r_1,r_2),$$

$$\text{if } t \xrightarrow{r_1} t' \text{ then } \exists s'.s \xrightarrow{r_2} s' \land R(t',s')\}$$

As a slogan: "related programs applied to related arguments produce related results"

Step-Indexing for Combinatory Logic: Use

- $\blacksquare \mathcal{L}^{\omega}$ is a fixpoint $\mathcal{L}^{\omega} = \mathcal{L}^{\omega} \cap \mathcal{E}(\mathcal{L}^{\omega}) \cap \mathcal{V}(\mathcal{L}^{\omega}, \mathcal{L}^{\omega})$
- In first-order case we would reduce to the familiar fixpoint theory and Kleene/Knaster-Tarski theorems, but because of higher-order, we generally do not (!)
- Every \mathcal{L}^{α} is a congruence
- \mathcal{L}^{ω} is sound for contextual preorder: $\mathcal{L}^{\alpha}(s,t)$ implies $s \lesssim_{ctx} t$

Example: We can reprove $f \lesssim_{\mathsf{ctx}} S \cdot (K \cdot I) \cdot f$, by showing by induction on n that $\mathcal{L}^n(t, S \cdot (K \cdot I) \cdot f)$ whenever $f \Rightarrow t$

Contextual Preorders in the Abstract

- Given a preorder $O \subseteq \Sigma^*\emptyset \times \Sigma^*\emptyset$, a relation $R \subseteq \Sigma^*\emptyset \times \Sigma^*\emptyset$ is O-adequate if $R \subseteq O$
- The greatest *O*-adequate congruence is the contextual preorder w.r.t. *O* and denoted ≤ ⁰
 - ▶ If $O = \{(t, s) \mid t \downarrow \Rightarrow s \downarrow \}$ then $\lesssim^0 = \lesssim_{ctx}$

Theorem: under general conditions \lesssim^0 exists and is a preorder

Step-Indexing in the Abstract

Additional parameters:

- 1. Coalgebra $\widetilde{\gamma} \colon \Sigma^* \emptyset \to B(\Sigma^* \emptyset, \Sigma^* \emptyset)$ abstracting weak transitions ' \Rightarrow ' (additionally to the automatic coalgebra γ of strong transitions ' \rightarrow ')
- 2. Relation lifting of B, i.e. its action on relations

Results: under general assumptions,

- 1. There is an abstract (ordinal-indexed) logical relation $(\Box^{\alpha}\top)_{\alpha}$
- 2. The limit $\Box^{\gamma} \top = \bigcap_{\alpha} \Box^{\alpha} \top$ exists
- 3. Every $\Box^{\alpha} \top$ is a congruence
- 4. If $\Box^{\gamma} \top$ is 0-adequate then $\Box^{\gamma} \top \subseteq \lesssim^{0}$

Ground Contextual Equivalence Revisited

■ By redefining weak transitions $t \stackrel{r}{\Rightarrow} s$ via

$$(\exists t'. t \Rightarrow t' \land t' \xrightarrow{r} s) \lor (\exists t'. t \Rightarrow t' \land s = t' r)$$

we obtain a different logical relation $\Box \top$

■ By taking

$$O_{bool} = \{(t, s) \mid t \downarrow \Rightarrow s \downarrow \}$$
 and $O_{\tau} = \top$ for $\tau \neq bool$

we obtain the ground contextual preorder $\lesssim_{ctx}^{bool} = \lesssim^0$

 \blacksquare $\Box^{\nu} \top$ is *O*-adequate, hence $\Box^{\nu} \top \subseteq \lesssim_{ctx}^{bool}$

Proving the "η-Law"

■ Recall: $t \stackrel{r}{\Rightarrow} s = (\exists t'. t \Rightarrow t' \land t' \stackrel{r}{\rightarrow} s) \lor (\exists t'. t \Rightarrow t' \land s = t' r)$

$$\begin{split} \mathcal{L}^{n+1} &= \mathcal{L}^n \cap \mathcal{E}(\mathcal{L}^n) \cap \mathcal{V}(\mathcal{L}^n, \mathcal{L}^n) \\ \mathcal{E}(\mathcal{L}^n) &= \{(t,s) \mid \text{if } t \to t' \text{ then } \exists s'. \, s \Rightarrow s' \wedge \mathcal{L}^n(t',s')\} \\ \mathcal{V}(\mathcal{L}^n, \mathcal{L}^n) &= \{(t,s) \mid \text{for all } r_1, r_2, \ \mathcal{L}^n(r_1, r_2), \\ &\quad \text{if } t \xrightarrow{r_1} t' \text{ then } \exists s'. \, s \stackrel{r_2}{\Rightarrow} s' \wedge \mathcal{L}^n(t',s')\} \end{split}$$

■ Proof of $\mathcal{L}^n(S \cdot (K \cdot I) \cdot f, f)$ by induction on n, in particular:

Conclusions

Our present construction of $\Box \top$ and results are highly flexible and cover

- varios choices of the underlying category (e.g. category of presheaves for λ-calculus)
- type constructors and recursive types
- nondeterminism

Further Work:

- Call-by-value
- Metric, probabilistic, quantialic, fibrational generalizations
- Modelling polymorphic languages
- Modelling effectful languages
- $\Box \top$ is included applicative bisimilarity. When they are equal?

Thank You for Your Attention!

Higher-Order Abstract GSOS

Categorical Framework for Higher-Order Operational Semantics

Central Result: Compositionality for Free

Under certain general assumptions, ~ is a congruence

Goncharov, Sergey, Stefan Milius, Lutz Schröder, Stelios Tsampas, and Henning Urbat. "Towards a Higher-Order Mathematical Operational

Semantics". In: Proc. ACM Program. Lang. 7 (2023), pp. 632–658. doi:

10.1145/3571215.

Goncharov, Sergey, Stefan Milius, Stelios Tsampas, and Henning Urbat. "Bialgebraic Reasoning on Higher-Order Program Equivalence". In: *LICS*. 2024, pp. 1–13.

Goncharov, Sergey, Alessio Santamaria, Lutz Schröder,

Stelios Tsampas, and Henning Urbat. "Logical Predicates in Higher-Order Mathematical Operational Semantics". In: Foundations of Software Science and Computation Structures - 27th International Conference, FoSSaCS 2024, Held as Part of the European Joint

Conferences on Theory and Practice of Software, ETAPS 2024, Luxembourg City, Luxembourg, April 6-11, 2024, Proceedings, Part II.

Ed. by Naoki Kobayashi and James Worrell. Vol. 14575. Lecture Notes in Computer Science. Springer, 2024, pp. 47–69. doi:

10.1007/978-3-031-57231-9_3. url:

https://doi.org/10.1007/978-3-031-57231-9_3.

Turi, D. and G. Plotkin. "Towards a Mathematical Operational

Semantics". In: Logic in Computer Science. IEEE. 1997, pp. 280-291. Urbat, Henning, Stelios Tsampas, Sergey Goncharov, Stefan Milius,

and Lutz Schröder. "Weak Similarity in Higher-Order Mathematical

Operational Semantics". In: LICS. 2023, pp. 1–13. doi:

10.1109/LICS56636.2023.10175706. url:

https://doi.org/10.1109/LICS56636.2023.10175706.