
Logical Predicates

in Higher-order Mathematical Operational Semantics

Sergey Goncharov, Alessio Santamaria, Lutz Schröder, Stelios Tsampas and Henning Urbat

FoSSaCS 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg

1

Higher-Order Mathematical Operational Semantics (or HO Abstract GSOS)

Higher-order

Abstract GSOS

(POPL’23, JFP)

Computational

Effects

Side-effects

Probabilistic,

Behavioural

Distances

Exceptions

Mechanization

Proofs

User interface

Secure

Compilation
Maps of HO

GSOS laws

Fully abstract

compilation

Secure Compi-

lation Criteria

Reasoning

Methods

Howe’s

Method

(LICS’23)

Logical

Relations

(FoSSaCS’24,

Arxiv)

Environmental

Bisimulations

2

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.

- Write Λτ (Γ) for the set {t | Γ ` t : τ} and Λτ for the set {t | ∅ ` t : τ}.

2. A (type-indexed) predicate P � Λ, that can’t be proven inductively

- Family (Pτ ⊆ Λτ)τ∈Ty

- Strong normalization, type safety etc.

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Logical in the sense that

“For any term t and s in �P and of the suitable type, t · s is also in �P”.

4. Proceed by induction to prove that (the open extension of) �P holds.

3

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.

- Write Λτ (Γ) for the set {t | Γ ` t : τ} and Λτ for the set {t | ∅ ` t : τ}.
2. A (type-indexed) predicate P � Λ, that can’t be proven inductively

- Family (Pτ ⊆ Λτ)τ∈Ty

- Strong normalization, type safety etc.

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Logical in the sense that

“For any term t and s in �P and of the suitable type, t · s is also in �P”.

4. Proceed by induction to prove that (the open extension of) �P holds.

3

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.

- Write Λτ (Γ) for the set {t | Γ ` t : τ} and Λτ for the set {t | ∅ ` t : τ}.
2. A (type-indexed) predicate P � Λ, that can’t be proven inductively

- Family (Pτ ⊆ Λτ)τ∈Ty

- Strong normalization, type safety etc.

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Logical in the sense that

“For any term t and s in �P and of the suitable type, t · s is also in �P”.

4. Proceed by induction to prove that (the open extension of) �P holds.

3

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.

- Write Λτ (Γ) for the set {t | Γ ` t : τ} and Λτ for the set {t | ∅ ` t : τ}.
2. A (type-indexed) predicate P � Λ, that can’t be proven inductively

- Family (Pτ ⊆ Λτ)τ∈Ty

- Strong normalization, type safety etc.

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Logical in the sense that

“For any term t and s in �P and of the suitable type, t · s is also in �P”.

4. Proceed by induction to prove that (the open extension of) �P holds.

3

Strong Normalization

Definition (A standard logical predicate)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Definition (Open extension of SN)

~SNτ (t)(Γ) = For any closed substitution (∅ ` en : Γ(n))n∈|Γ|

such that ∀n ∈ |Γ|.SNΓ(n)(en), then SNτ (t[en/xn])

4

Strong Normalization

Definition (A standard logical predicate)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Definition (Open extension of SN)

~SNτ (t)(Γ) = For any closed substitution (∅ ` en : Γ(n))n∈|Γ|

such that ∀n ∈ |Γ|.SNΓ(n)(en), then SNτ (t[en/xn])

4

Strong Normalization

One annoying case of the proof is that of λ-abstraction Γ ` λx : τ1.t : τ1 _ τ2.

Given a substitution (∅ ` en : Γ(n))n∈|Γ| satisftying SN, we have to:

• Push the substitution inside the λ-abstraction, try to prove that the whole term is

in SN, for that reason consider what happens when we have terms such as

(λx : τ1.t
′) · s with SNτ1(s) for the substituted t ′, think back to what happens

during β-reduction, reflect on properties of substitution etc.

Complex language =⇒ complex argument...

5

The goal of this talk

I will argue for two directions of abstraction, via

Higher-order Abstract GSOS

SN �P

SNγ �γP

Any predicate P

Any semantics γ

Any predicate PAny predicate P

+Efficient

reasoning!

6

The goal of this talk

I will argue for two directions of abstraction, via

Higher-order Abstract GSOS

SN �P

SNγ �γP

Any predicate P

Any semantics γ

Any predicate PAny predicate P

+Efficient

reasoning!

6

Dissecting the logical predicate (1)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Idea : Write t
s

=⇒ t ′ if t ⇓ λx : τ1.M and t ′ = M[s/x]

V

unit (t) = ⇓unit (t)

V

τ1_τ2
(t) = ⇓τ1_τ2

t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧
V

τ1
(s) =⇒

V

τ2
(t ′))

Idea : Abstract away from the predicate ⇓

7

Dissecting the logical predicate (1)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Idea : Write t
s

=⇒ t ′ if t ⇓ λx : τ1.M and t ′ = M[s/x]

V

unit (t) = ⇓unit (t)

V

τ1_τ2
(t) = ⇓τ1_τ2

t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧
V

τ1
(s) =⇒

V

τ2
(t ′))

Idea : Abstract away from the predicate ⇓

7

Dissecting the logical predicate (1)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Idea : Write t
s

=⇒ t ′ if t ⇓ λx : τ1.M and t ′ = M[s/x]

V

unit (t) = ⇓unit (t)

V

τ1_τ2
(t) = ⇓τ1_τ2

t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧
V

τ1
(s) =⇒

V

τ2
(t ′))

Idea : Abstract away from the predicate ⇓

7

Dissecting the logical predicate (1)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Idea : Write t
s

=⇒ t ′ if t ⇓ λx : τ1.M and t ′ = M[s/x]

V

unit (t) = ⇓unit (t)

V

τ1_τ2
(t) = ⇓τ1_τ2

t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧
V

τ1
(s) =⇒

V

τ2
(t ′))

Idea : Abstract away from the predicate ⇓

7

Dissecting the logical predicate (2)

�Punit (t) = Punit (t)

�Pτ1_τ2 (t) = Pτ1_τ2 t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧�Pτ1 (s) =⇒ �Pτ2 (t ′))

Idea : Move one from ⇒ to the more fundamental →

�Punit(t) = Punit(t)

�

greatest subset of Λτ1_τ2

Pτ1_τ2(t) =⇒ Pτ1_τ2(t) ∧

�Pτ1_τ2(t ′) if t → t ′

�Pτ1(s) =⇒ �Pτ2(t ′) if t
s−→ t ′

8

Dissecting the logical predicate (2)

�Punit (t) = Punit (t)

�Pτ1_τ2 (t) = Pτ1_τ2 t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧�Pτ1 (s) =⇒ �Pτ2 (t ′))

Idea : Move one from ⇒ to the more fundamental →

�Punit(t) = Punit(t)

�

greatest subset of Λτ1_τ2

Pτ1_τ2(t) =⇒ Pτ1_τ2(t) ∧

�Pτ1_τ2(t ′) if t → t ′

�Pτ1(s) =⇒ �Pτ2(t ′) if t
s−→ t ′

8

Dissecting the logical predicate (2)

�Punit (t) = Punit (t)

�Pτ1_τ2 (t) = Pτ1_τ2 t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧�Pτ1 (s) =⇒ �Pτ2 (t ′))

Idea : Move one from ⇒ to the more fundamental →

�Punit(t) = Punit(t)

�

greatest subset of Λτ1_τ2

Pτ1_τ2(t) =⇒ Pτ1_τ2(t) ∧

�Pτ1_τ2(t ′) if t → t ′

�Pτ1(s) =⇒ �Pτ2(t ′) if t
s−→ t ′

8

Induction up to �· on STLC

Theorem

Let P � Λ be any predicate on closed terms. Then P is true if all of the following

are true:

1. the unit expression e : unit satisfies �unitP Punit,

2. for all closed application terms t s such that �τ1_τ2P(t) and �τ1P(s), we have

�τ2P(t s) Pτ2(t s), and

3. for all λ-abstractions λx : τ1. t : τ1 _ τ2, such that λx : τ1. t is in the open

extension of �P and given a substitution ~e that satisfies �P, (λx : τ1. t)[~e/~x], we

have that (λx : τ1. t)[~e/~x] is in �P, P.

Proof.

Instantiate Th. 36 with (Th36.P)τ (∅) = Pτ and (Th36.P)τ (Γ 6= ∅) = >.

9

Let’s try this out!

Proving strong normalization for STLC

1. ⇓unit (e);

2. ⇓τ2 (t s) with �τ1_τ2 ⇓ (t) and �τ1 ⇓ (s);

3. ⇓τ1_τ2 (λx : τ1. t) (what t can do is irrelevant in this case).

Proof.

(1) and (3) are trivial, (2) is straightforward once you realize that �Q is an invariant

w.r.t. → for all Q.

10

Let’s try this out!

Proving strong normalization for STLC

1. ⇓unit (e);

2. ⇓τ2 (t s) with �τ1_τ2 ⇓ (t) and �τ1 ⇓ (s);

3. ⇓τ1_τ2 (λx : τ1. t) (what t can do is irrelevant in this case).

Proof.

(1) and (3) are trivial, (2) is straightforward once you realize that �Q is an invariant

w.r.t. → for all Q.

10

Objective Complete

Let’s explore the other direction

SN �P

SNγ �γP

Any predicate P

Any semantics γAny semantics γ +Efficient

reasoning!

11

Objective Complete

Let’s explore the other direction

SN �P

SNγ �γP

Any predicate P

Any semantics γAny semantics γ +Efficient

reasoning!

11

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

12

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

12

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

12

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

12

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty

- Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

12

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

12

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

12

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

12

(Vanilla) Logical Predicates proof method in the abstract

Assuming the following:

1. An initial algebra (object of terms) ΣµΣ
ι−→ µΣ,

2. an “operational semantics” morphism µΣ→ B(µΣ, µΣ) for some bifunctor

B : Cop×C → C,

3. and logical predicates �(−),

the proof method of logical predicates amount to the following:

Fundamental Property

As initial algebras have no proper subalgebras, then

Σ(�P) ≤ ι?[�P] =⇒ �P ∼= µΣ =⇒ P ∼= µΣ.

13

Categorical machinery

B(X ,Y) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

For example, B(P,Q) ⊆ µΣ + µΣµΣ is the disjoint union of (i) the set {t | Q(t)} and

(ii) the set of functions f ∈ µΣµΣ that map inputs in P to outputs in Q.

14

Categorical machinery

B(X ,Y) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

For example, B(P,Q) ⊆ µΣ + µΣµΣ is the disjoint union of (i) the set {t | Q(t)} and

(ii) the set of functions f ∈ µΣµΣ that map inputs in P to outputs in Q.

14

Categorical machinery

B(X ,Y) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

For example, B(P,Q) ⊆ µΣ + µΣµΣ is the disjoint union of (i) the set {t | Q(t)} and

(ii) the set of functions f ∈ µΣµΣ that map inputs in P to outputs in Q.

14

Logical Predicates

Relative invariant

Let c : Y → B(X ,Y) be a B(X ,−)-coalgebra. Given predicates S � X , P � Y , we

say that P is an S-relative (B-)invariant (for c) if

P ≤ c?[B(S ,P)].

Logical Predicate

A predicate P � µΣ is logical (for γ) if it is a P-relative B-invariant.

A predicate P is logical if for all t ∈ µΣ, P(t) implies:

1. If t → t ′, then P(t ′) (with ND: if ∃t. t → t ′, then P(t ′)).

2. For all s, if t
s−→ t ′ and P(s), then P(t ′).

15

Logical Predicates

Relative invariant

Let c : Y → B(X ,Y) be a B(X ,−)-coalgebra. Given predicates S � X , P � Y , we

say that P is an S-relative (B-)invariant (for c) if

P ≤ c?[B(S ,P)].

Logical Predicate

A predicate P � µΣ is logical (for γ) if it is a P-relative B-invariant.

A predicate P is logical if for all t ∈ µΣ, P(t) implies:

1. If t → t ′, then P(t ′) (with ND: if ∃t. t → t ′, then P(t ′)).

2. For all s, if t
s−→ t ′ and P(s), then P(t ′).

15

Logical Predicates

Relative invariant

Let c : Y → B(X ,Y) be a B(X ,−)-coalgebra. Given predicates S � X , P � Y , we

say that P is an S-relative (B-)invariant (for c) if

P ≤ c?[B(S ,P)].

Logical Predicate

A predicate P � µΣ is logical (for γ) if it is a P-relative B-invariant.

A predicate P is logical if for all t ∈ µΣ, P(t) implies:

1. If t → t ′, then P(t ′) (with ND: if ∃t. t → t ′, then P(t ′)).

2. For all s, if t
s−→ t ′ and P(s), then P(t ′).

15

Logical Predicates

Relative invariant

Let c : Y → B(X ,Y) be a B(X ,−)-coalgebra. Given predicates S � X , P � Y , we

say that P is an S-relative (B-)invariant (for c) if

P ≤ c?[B(S ,P)].

Logical Predicate

A predicate P � µΣ is logical (for γ) if it is a P-relative B-invariant.

A predicate P is logical if for all t ∈ µΣ, P(t) implies:

1. If t → t ′, then P(t ′) (with ND: if ∃t. t → t ′, then P(t ′)).

2. For all s, if t
s−→ t ′ and P(s), then P(t ′).

15

One logical predicate to rule them all

The �

Under certain conditions, the most important being that the predicate lifting B is

predicate-contractive, for every predicate P � X on the state space of our

coalgebra X → B(X ,X) (i.e. a program property), there exists a certain “large”

predicate �P such that:

1. �P ≤ P

2. �P ≤ c?[B(�P,�P)] (i.e. �P is logical)

3. �P is the largest �P-relative invariant.

Conclusion/translation: The lifting being defined inductively on types is sufficient for

the existence of this magical, suitable logical predicate.

16

One logical predicate to rule them all

The �

Under certain conditions, the most important being that the predicate lifting B is

predicate-contractive, for every predicate P � X on the state space of our

coalgebra X → B(X ,X) (i.e. a program property), there exists a certain “large”

predicate �P such that:

1. �P ≤ P

2. �P ≤ c?[B(�P,�P)] (i.e. �P is logical)

3. �P is the largest �P-relative invariant.

Conclusion/translation: The lifting being defined inductively on types is sufficient for

the existence of this magical, suitable logical predicate.

16

Induction up to �

The definition of logicality and � systematizes the logical predicates proof method, but

where is the “efficient reasoning”?

Induction up to �

For a certain class of higher-order GSOS laws, instead of laboriously showing

Σ(�P) ≤ ι?[�P], it suffices to show the much simpler Σ(�P) ≤ ι?[P].

Note: Things are a bit more complex in languages with binding and substitution due to

contractivity considerations, but the principle is the same. This explains the need to

extend the predicate to open terms.

Induction up to �·
For a certain class of λ-laws, instead of laboriously showing Σ(�·P) ≤ ι?[�·P], it

suffices to show the much simpler Σ(�P) ≤ ι?[P].

17

Induction up to �

The definition of logicality and � systematizes the logical predicates proof method, but

where is the “efficient reasoning”?

Induction up to �

For a certain class of higher-order GSOS laws, instead of laboriously showing

Σ(�P) ≤ ι?[�P], it suffices to show the much simpler Σ(�P) ≤ ι?[P].

Note: Things are a bit more complex in languages with binding and substitution due to

contractivity considerations, but the principle is the same. This explains the need to

extend the predicate to open terms.

Induction up to �·
For a certain class of λ-laws, instead of laboriously showing Σ(�·P) ≤ ι?[�·P], it

suffices to show the much simpler Σ(�P) ≤ ι?[P].

17

Induction up to �

The definition of logicality and � systematizes the logical predicates proof method, but

where is the “efficient reasoning”?

Induction up to �

For a certain class of higher-order GSOS laws, instead of laboriously showing

Σ(�P) ≤ ι?[�P], it suffices to show the much simpler Σ(�P) ≤ ι?[P].

Note: Things are a bit more complex in languages with binding and substitution due to

contractivity considerations, but the principle is the same.

This explains the need to

extend the predicate to open terms.

Induction up to �·
For a certain class of λ-laws, instead of laboriously showing Σ(�·P) ≤ ι?[�·P], it

suffices to show the much simpler Σ(�P) ≤ ι?[P].

17

Induction up to �

The definition of logicality and � systematizes the logical predicates proof method, but

where is the “efficient reasoning”?

Induction up to �

For a certain class of higher-order GSOS laws, instead of laboriously showing

Σ(�P) ≤ ι?[�P], it suffices to show the much simpler Σ(�P) ≤ ι?[P].

Note: Things are a bit more complex in languages with binding and substitution due to

contractivity considerations, but the principle is the same. This explains the need to

extend the predicate to open terms.

Induction up to �·
For a certain class of λ-laws, instead of laboriously showing Σ(�·P) ≤ ι?[�·P], it

suffices to show the much simpler Σ(�P) ≤ ι?[P].

17

Thank you!

18

