
Logical Relations (and more)

in Higher-order Mathematical Operational Semantics

Sergey Goncharov, Alessio Santamaria, Lutz Schröder, Stelios Tsampas and Henning Urbat

Chocola, May 2024

Friedrich-Alexander-Universität Erlangen-Nürnberg

1

Higher-Order Mathematical Operational Semantics (or HO Abstract GSOS)

Higher-order

Abstract GSOS

(POPL’23, JFP)

Computational

Effects

Side-effects

Probabilistic,

Behavioural

Distances

Exceptions

Mechanization

Proofs

User interface

Secure

Compilation
Maps of HO

GSOS laws

Fully abstract

compilation

Secure Compi-

lation Criteria

Reasoning

Methods

Howe’s

Method

(LICS’23)

Logical

Relations

(FoSSaCS’24,

LICS’24)

Environmental

Bisimulations

2

Overview

HO-MOS or

Higher-order Abstract GSOS

Relational Reasoning

Step-indexed Logical Relations

Logical Predicates

3

HO-MOS or

Higher-order Abstract GSOS

GSOS rules

Definition (GSOS rule)

{xi
a−−→ yaij}

1≤ i ≤ ar(f), a∈Ai

1≤ j ≤ nai
{xi 6

b−→}1≤ i ≤ ar(f)
b∈Bi

f(x1, . . . , xar(f))
c−−→ t

where f ∈ Σ, Ai ,Bi range over subsets of L and nai ∈ N and c ∈ L. Variables xi and

yaij are all distinct and are the only variables appearing in t.

Example rule

p
a−→ p′

p || q a−→ p′ || q

4

GSOS rules

Definition (GSOS rule)

{xi
a−−→ yaij}

1≤ i ≤ ar(f), a∈Ai

1≤ j ≤ nai
{xi 6

b−→}1≤ i ≤ ar(f)
b∈Bi

f(x1, . . . , xar(f))
c−−→ t

where f ∈ Σ, Ai ,Bi range over subsets of L and nai ∈ N and c ∈ L. Variables xi and

yaij are all distinct and are the only variables appearing in t.

Example rule

p
a−→ p′

p || q a−→ p′ || q

4

GSOS rules

Definition (GSOS rule)

{xi
a−−→ yaij}

1≤ i ≤ ar(f), a∈Ai

1≤ j ≤ nai
{xi 6

b−→}1≤ i ≤ ar(f)
b∈Bi

f(x1, . . . , xar(f))
c−−→ t

where f ∈ Σ, Ai ,Bi range over subsets of L and nai ∈ N and c ∈ L. Variables xi and

yaij are all distinct and are the only variables appearing in t.

Example rule

p

generic

a−→ p′

generic

p || q a−→ p′ || q

4

Abstract GSOS (Mathematical Operational Semantics)

Let endofunctors Σ,B : C → C in some distributive category C and assume that the

free monad over Σ, Σ?, exists.

Definition (Turi and Plotkin [1])

A GSOS law of Σ (modelling the syntax of the system) over B (modelling the

behaviour) is a natural transformation 1

ρX : Σ(X × BX)→ BΣ?X .

1Roughly a parametrically polymorphic function.

5

Abstract GSOS

Theorem (Turi and Plotkin [1])

Let finitary signature Σ, with associated endofunctor Σ: Set→ Set, and a finite set

of actions L. GSOS specifications of Σ over L are in a bijective correspondence with

GSOS laws of Σ over (PfX)L.

p
a−−→ p′

p || q a−−→ p′ || q
∼=

ρX :
∐
f∈Σ

(X × (PfX)L)ar(f) → (PfΣ
∗X)L

6

Abstract GSOS

Theorem (Turi and Plotkin [1])

Let finitary signature Σ, with associated endofunctor Σ: Set→ Set, and a finite set

of actions L. GSOS specifications of Σ over L are in a bijective correspondence with

GSOS laws of Σ over (PfX)L.

p
a−−→ p′

p || q a−−→ p′ || q
∼=

ρX :
∐
f∈Σ

(X × (PfX)L)ar(f) → (PfΣ
∗X)L

6

Abstract GSOS

Theorem (Turi and Plotkin [1])

Let finitary signature Σ, with associated endofunctor Σ: Set→ Set, and a finite set

of actions L. GSOS specifications of Σ over L are in a bijective correspondence with

GSOS laws of Σ over (PfX)L.

p
a−−→ p′

p || q a−−→ p′ || q
∼=

ρX :
∐
f∈Σ

(X × (PfX)L)ar(f) → (PfΣ
∗X)L

6

Abstract GSOS

Theorem (Turi and Plotkin [1])

Let finitary signature Σ, with associated endofunctor Σ: Set→ Set, and a finite set

of actions L. GSOS specifications of Σ over L are in a bijective correspondence with

GSOS laws of Σ over (PfX)L.

p
a−−→ p′

p || q a−−→ p′ || q
∼=

ρX :
∐
f∈Σ

(X × (Pf X)L)ar(f) → (PfΣ
∗ X)L

7

Abstract GSOS

Theorem (Turi and Plotkin [1])

Let finitary signature Σ, with associated endofunctor Σ: Set→ Set, and a finite set

of actions L. GSOS specifications of Σ over L are in a bijective correspondence with

GSOS laws of Σ over (PfX)L.

p
a−−→ p′

p || q a−−→ p′ || q
∼=

ρX :
∐
f∈Σ

(X × (Pf X)L)ar(f) → (PfΣ
∗ X)L

7

Abstract GSOS

Theorem (Turi and Plotkin [1])

Let finitary signature Σ, with associated endofunctor Σ: Set→ Set, and a finite set

of actions L. GSOS specifications of Σ over L are in a bijective correspondence with

GSOS laws of Σ over (PfX)L.

p
a−−→ p′

p || q a−−→ p′ || q
∼=

ρX :
∐
f∈Σ

(X × (Pf X)L)ar(f) → (PfΣ
∗ X)L

7

Abstract GSOS

Theorem (Turi and Plotkin [1])

Let finitary signature Σ, with associated endofunctor Σ: Set→ Set, and a finite set

of actions L. GSOS specifications of Σ over L are in a bijective correspondence with

GSOS laws of Σ over (PfX)L.

p
a−−→ p′

p || q a−−→ p′ || q
∼=

ρX :
∐
f∈Σ

(X × (Pf X)L)ar(f) → (PfΣ
∗ X)L

7

Abstract GSOS

Theorem (Turi and Plotkin [1])

Let finitary signature Σ, with associated endofunctor Σ: Set→ Set, and a finite set

of actions L. GSOS specifications of Σ over L are in a bijective correspondence with

GSOS laws of Σ over (PfX)L.

p
a−−→ p′

p || q a−−→ p′ || q
∼=

ρX :
∐
f∈Σ

(X × (Pf X)L)ar(f) → (PfΣ
∗ X)L

7

Abstract GSOS

The fascinating part is that GSOS laws gave a precise, concise

mathematical representation of what GSOS specifications are.

They are certain natural transformations.

8

Abstract GSOS

The fascinating part is that GSOS laws gave a precise, concise

mathematical representation of what GSOS specifications are.

They are certain natural transformations.

8

Abstract GSOS

Operational rules

p
a−→ p′

p || q a−→ p′ || q
∼=

GSOS laws: natural transformations

ρX : Σ(X × BX)︸ ︷︷ ︸
premises

→ B(Σ∗X)︸ ︷︷ ︸
conclusion

for functors Σ,B : C → C representing syntax

and behaviour (e.g. B = PL
f).

I Operational model µΣ

(inductively defined) programs

→ B(µΣ), denotational model Σ(νB)→ νB

(coinductive) behaviours

.

I Key feature: compositionality, i.e. bisimilarity is a congruence:

pi ∼ qi (i = 1, . . . , n)
f ∈Σ
==⇒ f(p1, . . . , pn) ∼ f(q1, . . . , qn).

I Scope: first-order (CCS, π-calculus, . . .), higher-order (λ-calculus, SKI calculus)

9

Abstract GSOS

Operational rules

p
a−→ p′

p || q a−→ p′ || q
∼=

GSOS laws: natural transformations

ρX : Σ(X × BX)︸ ︷︷ ︸
premises

→ B(Σ∗X)︸ ︷︷ ︸
conclusion

for functors Σ,B : C → C representing syntax

and behaviour (e.g. B = PL
f).

I Operational model µΣ

(inductively defined) programs

→ B(µΣ), denotational model Σ(νB)→ νB

(coinductive) behaviours

.

I Key feature: compositionality, i.e. bisimilarity is a congruence:

pi ∼ qi (i = 1, . . . , n)
f ∈Σ
==⇒ f(p1, . . . , pn) ∼ f(q1, . . . , qn).

I Scope: first-order (CCS, π-calculus, . . .), higher-order (λ-calculus, SKI calculus)

9

Abstract GSOS

Operational rules

p
a−→ p′

p || q a−→ p′ || q
∼=

GSOS laws: natural transformations

ρX : Σ(X × BX)︸ ︷︷ ︸
premises

→ B(Σ∗X)︸ ︷︷ ︸
conclusion

for functors Σ,B : C → C representing syntax

and behaviour (e.g. B = PL
f).

I Operational model µΣ

(inductively defined) programs

→ B(µΣ), denotational model Σ(νB)→ νB

(coinductive) behaviours

.

I Key feature: compositionality, i.e. bisimilarity is a congruence:

pi ∼ qi (i = 1, . . . , n)
f ∈Σ
==⇒ f(p1, . . . , pn) ∼ f(q1, . . . , qn).

I Scope: first-order (CCS, π-calculus, . . .), higher-order (λ-calculus, SKI calculus)

9

Abstract GSOS

Operational rules

p
a−→ p′

p || q a−→ p′ || q
∼=

GSOS laws: natural transformations

ρX : Σ(X × BX)︸ ︷︷ ︸
premises

→ B(Σ∗X)︸ ︷︷ ︸
conclusion

for functors Σ,B : C → C representing syntax

and behaviour (e.g. B = PL
f).

I Operational model µΣ

(inductively defined) programs

→ B(µΣ), denotational model Σ(νB)→ νB

(coinductive) behaviours

.

I Key feature: compositionality, i.e. bisimilarity is a congruence:

pi ∼ qi (i = 1, . . . , n)
f ∈Σ
==⇒ f(p1, . . . , pn) ∼ f(q1, . . . , qn).

I Scope: first-order (CCS, π-calculus, . . .), higher-order (λ-calculus, SKI calculus)
9

Higher-order abstract GSOS?

For all the success of abstract GSOS (variable binding [2],

formats [3]–[6], effects [7]–[9], compilers [10]–[12]), higher-order

languages have always been the big question mark.

10

An enduring problem

Turi and Plotkin 1997 [1]

The major challenge ahead is the operational semantics of the languages with

variable binders, such as the π-calculus and the λ-calculus.

[...]

Hirschowitz and Lafont 2022 [13]

This approach has been deeply investigated, notably for quantitative languages [3].

However, as of today, attempts to apply it to higher-order (e.g., functional)

languages have failed.

11

An enduring problem

Turi and Plotkin 1997 [1]

The major challenge ahead is the operational semantics of the languages with

variable binders, such as the π-calculus and the λ-calculus.

[...]

Hirschowitz and Lafont 2022 [13]

This approach has been deeply investigated, notably for quantitative languages [3].

However, as of today, attempts to apply it to higher-order (e.g., functional)

languages have failed.

11

An enduring problem

Turi and Plotkin 1997 [1]

The major challenge ahead is the operational semantics of the languages with

variable binders, such as the π-calculus and the λ-calculus.

[...]

Hirschowitz and Lafont 2022 [13]

This approach has been deeply investigated, notably for quantitative languages [3].

However, as of today, attempts to apply it to higher-order (e.g., functional)

languages have failed.

11

An enduring problem

Turi and Plotkin 1997 [1]

The major challenge ahead is the operational semantics of the languages with

variable binders, such as the π-calculus and the λ-calculus.

[...]

Hirschowitz and Lafont 2022 [13]

This approach has been deeply investigated, notably for quantitative languages [3].

However, as of today, attempts to apply it to higher-order (e.g., functional)

languages have failed.

11

SKIu combinator calculus

S
t−→ S ′(t) S ′(p)

t−→ S ′′(p, t) S ′′(p, q)
t−→ (p t) (q t)

K
t−→ K ′(t) K ′(p)

t−→ p I
t−→ t

p → p′

p q → p′ q

p
q−→ p′

p q → p′

Figure 1: Small-step operational semantics of the SKIu calculus, our version of the SKI

combinator calculus, invented by Curry [14].

Disclaimer: This is just a convenient example to introduce HO-MOS. The latter can

do the λ-calculus, typed or untyped, with simple or recursive types, etc.

12

SKIu combinator calculus

S
t−→ S ′(t) S ′(p)

t−→ S ′′(p, t) S ′′(p, q)
t−→ (p t) (q t)

K
t−→ K ′(t) K ′(p)

t−→ p I
t−→ t

p → p′

p q → p′ q

p
q−→ p′

p q → p′

Figure 1: Small-step operational semantics of the SKIu calculus, our version of the SKI

combinator calculus, invented by Curry [14].

Disclaimer: This is just a convenient example to introduce HO-MOS. The latter can

do the λ-calculus, typed or untyped, with simple or recursive types, etc.
12

SKIu combinator calculus

S ′′(p, q)
t−→ (p t) (q t)

p → p′

p q → p′ q

p
q−→ p′

p q → p′

13

A combinator calculus

S ′′(p, q)

combinator

t−→ (p t) (q t)

p → p′

p q → p′ q

p
q−→ p′

p q → p′

13

A combinator calculus

S ′′(p, q)

combinator

t−→ (p t) (q t)

p → p′

p q

application

→ p′ q

p
q−→ p′

p q → p′

13

A combinator calculus

S ′′(p, q)

combinator

t

Labels can be a terms!

−→ (p t) (q t)

p → p′

p q

application

→ p′ q

p
q−→ p′

p q → p′

13

GSOS vs combinator calculi

GSOS

p
a−→ p′

p || q a−→ p′ || q

Is it GSOS?

p → p′

p q → p′ q

Yeah!

p
q−→ p′

p q → p′

Nope!

S ′′(p, q)
t−→ (p t) (q t)

Nope!

14

GSOS vs combinator calculi

GSOS

p
a−→ p′

p || q a−→ p′ || q

Is it GSOS?

p → p′

p q → p′ q
Yeah!

p
q−→ p′

p q → p′

Nope!

S ′′(p, q)
t−→ (p t) (q t)

Nope!

14

GSOS vs combinator calculi

GSOS

p
a−→ p′

p || q a−→ p′ || q

Is it GSOS?

p → p′

p q → p′ q
Yeah!

p
q−→ p′

p q → p′
Nope!

S ′′(p, q)
t−→ (p t) (q t)

Nope!

14

GSOS vs combinator calculi

GSOS

p
a−→ p′

p || q a−→ p′ || q

Is it GSOS?

p → p′

p q → p′ q
Yeah!

p
q−→ p′

p q → p′
Nope!

S ′′(p, q)
t−→ (p t) (q t)

Nope!

14

The Issue With Higher-Order Languages

Higher-order languages require behaviours like

BX = XX .

This is not an endofunctor – but

B(X ,Y) = Y X

is a bifunctor contravariant in X and covariant in Y .

Key idea for higher-order abstract GSOS

endofunctors B : C → C + natural transformations

⇓

bifunctors B : Cop×C → C + dinatural transformations.

15

The Issue With Higher-Order Languages

Higher-order languages require behaviours like

BX = XX .

This is not an endofunctor – but

B(X ,Y) = Y X

is a bifunctor contravariant in X and covariant in Y .

Key idea for higher-order abstract GSOS

endofunctors B : C → C + natural transformations

⇓

bifunctors B : Cop×C → C + dinatural transformations.

15

Higher-order GSOS laws

Definition

A higher-order GSOS law of Σ: C → C (modelling the syntax) over B : Cop×C → C
(modelling higher-order behaviour) is a family of morphisms

ρX ,Y : Σ(X × B(X ,Y))→ B(X ,Σ?(X + Y))

dinatural in X ∈ C and natural in Y ∈ C.

16

A higher-order format for combinatory logic

Definition (HO rules)

(xj → yj)j∈W (xi
z−−→ y zi)i∈{1,...,n}rW , z∈{x1,...,xn}

f(x1, . . . , xn)→ t

(xj → yj)j∈W (xi
z−−→ y zi)i∈{1,...,n}rW , z∈{x ,x1,...,xn}

f(x1, . . . , xn)
x−−→ t

Example rules (sugared)

S ′′(p, q)
t−→ (p t) (q t)

p → p′

p q → p′ q

p
q−→ p′

p q → p′

17

A higher-order format for combinatory logic

Definition (HO rules)

(xj → yj)j∈W (xi
z−−→ y zi)i∈{1,...,n}rW , z∈{x1,...,xn}

f(x1, . . . , xn)→ t

(xj → yj)j∈W (xi
z−−→ y zi)i∈{1,...,n}rW , z∈{x ,x1,...,xn}

f(x1, . . . , xn)
x−−→ t

Example rules (sugared)

S ′′(p, q)
t−→ (p t) (q t)

p → p′

p q → p′ q

p
q−→ p′

p q → p′

17

Higher-Order Mathematical Operational Semantics

Proposition

For every finitary signature Σ, with associated endofunctor Σ: Set→ Set, HO
specifications are in a bijective correspondence with higher-order GSOS laws of Σ

over B(X ,Y) = Y + Y X .

p
q−−→ p′

p q −→ p′

∼=

ρX :
∐
f∈Σ

(X × (Y + Y
X

))ar(f) → Σ∗(X + Y)

18

Higher-Order Mathematical Operational Semantics

Proposition

For every finitary signature Σ, with associated endofunctor Σ: Set→ Set, HO
specifications are in a bijective correspondence with higher-order GSOS laws of Σ

over B(X ,Y) = Y + Y X .

p
q−−→ p′

p q −→ p′

∼=

ρX :
∐
f∈Σ

(X × (Y + Y
X

))ar(f) → Σ∗(X + Y)

18

Higher-Order Mathematical Operational Semantics

Proposition

For every finitary signature Σ, with associated endofunctor Σ: Set→ Set, HO
specifications are in a bijective correspondence with higher-order GSOS laws of Σ

over B(X ,Y) = Y + Y X .

p
q−−→ p′

p q −→ p′

∼=

ρX :
∐
f∈Σ

(X × (Y + Y
X

))ar(f) → Σ∗(X + Y)

18

Higher-Order Mathematical Operational Semantics

Proposition

For every finitary signature Σ, with associated endofunctor Σ: Set→ Set, HO
specifications are in a bijective correspondence with higher-order GSOS laws of Σ

over B(X ,Y) = Y + Y X .

p
q−−→ p′

p q −→ p′

∼=

ρX :
∐
f∈Σ

(X × (Y + Y
X

))ar(f) → Σ∗(X + Y)

18

Higher-Order Mathematical Operational Semantics

Proposition

For every finitary signature Σ, with associated endofunctor Σ: Set→ Set, HO
specifications are in a bijective correspondence with higher-order GSOS laws of Σ

over B(X ,Y) = Y + Y X .

p
q−−→ p′

p q −→ p′

∼=

ρX :
∐
f∈Σ

(X × (Y + Y
X

))ar(f) → Σ∗(X + Y)

18

Higher-Order Abstract GSOS

Operational rules

p
q−→ p′

p q → p′

(λx .p) q → p[q/x]

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y))︸ ︷︷ ︸
conclusion

For combinator calculi, we have

C = Set

ΣX = 1 + X × X + . . .

B(X ,Y) = Y + Y X

β-reduction or combinator

19

Higher-Order Abstract GSOS

Operational rules

p
q−→ p′

p q → p′

(λx .p) q → p[q/x]

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y))︸ ︷︷ ︸
conclusion

For combinator calculi, we have

C = Set

ΣX = 1 + X × X + . . .

B(X ,Y) = Y + Y X

β-reduction or combinator

19

Higher-Order Abstract GSOS

Operational rules

p
q−→ p′

p q → p′

(λx .p) q → p[q/x]

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y))︸ ︷︷ ︸
conclusion

For the call-by-name λ-calculus, we have

C = SetF

ΣX = V + δX + X × X (Fiore, Plotkin and Turi [15])

B(X ,Y) = 〈X ,Y 〉

substitution stucture

× (Y + Y X + 1)

β-reduction, λ-expr or stuck

19

Higher-Order Abstract GSOS

Operational rules

(λx .p) q → p[q/x]

p → p′

p q → p′ q

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y))︸ ︷︷ ︸
conclusion

I Operational model γ : µΣ

programs

→ B(µΣ, µΣ), denotational model.

e.g. γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x]), (γ(I) = id for SKI)

I Key feature: compositionality, i.e. bisimilarity is a congruence.︸ ︷︷ ︸
Proof: more complex than first-order case + needs mild assumptions.

20

Higher-Order Abstract GSOS

Operational rules

(λx .p) q → p[q/x]

p → p′

p q → p′ q

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y))︸ ︷︷ ︸
conclusion

I Operational model γ : µΣ

programs

→ B(µΣ, µΣ), denotational model.

e.g. γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x]), (γ(I) = id for SKI)

I Key feature: compositionality, i.e. bisimilarity is a congruence.︸ ︷︷ ︸
Proof: more complex than first-order case + needs mild assumptions.

20

Higher-Order Abstract GSOS

Operational rules

(λx .p) q → p[q/x]

p → p′

p q → p′ q

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y))︸ ︷︷ ︸
conclusion

I Operational model γ : µΣ

programs

→ B(µΣ, µΣ), denotational model.

e.g. γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x]), (γ(I) = id for SKI)

I Key feature: compositionality, i.e. bisimilarity is a congruence.︸ ︷︷ ︸
Proof: more complex than first-order case + needs mild assumptions. 20

Strong Applicative Bisimilarity

Coalgebraic bisimilarity on operational model µΣ→ B(µΣ, µΣ)

=

strong applicative bisimilarity.

Example: λ-calculus

Greatest relation ∼⊆ Λ

closed λ-terms

× Λ such that for t1 ∼ t2,

t1 → t ′1 =⇒ t2 → t ′2 ∧ t ′1 ∼ t ′2;

t1 = λx .t ′1 =⇒ t2 = λx .t ′2 ∧ ∀e ∈ Λ. t ′1[e/x] ∼ t ′2[e/x];

+ two symmetric conditions

21

Strong Applicative Bisimilarity

Coalgebraic bisimilarity on operational model µΣ→ B(µΣ, µΣ)

=

strong applicative bisimilarity.

Example: λ-calculus

Greatest relation ∼⊆ Λ

closed λ-terms

× Λ such that for t1 ∼ t2,

t1 → t ′1 =⇒ t2 → t ′2 ∧ t ′1 ∼ t ′2;

t1 = λx .t ′1 =⇒ t2 = λx .t ′2 ∧ ∀e ∈ Λ. t ′1[e/x] ∼ t ′2[e/x];

+ two symmetric conditions

21

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C

2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C

2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C

4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s

5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C

4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s

5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C.

[16]: Congruence of

bisimilarity, for free!

22

Abstract odelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [16]: Congruence of

bisimilarity, for free!

22

Question marks

Concrete/Abstract

8. Howe’s closure

9. Howe’s method

10. Logical predicates/relations

11. Fundamental Properties

8. ???

9. ???

10. ???

11. ???

We want to model all of the above generically, in a language-independent manner.
Relation

Lifting!

Predicate

Lifting!

23

Question marks

Concrete/Abstract

8. Howe’s closure

9. Howe’s method

10. Logical predicates/relations

11. Fundamental Properties

8. ???

9. ???

10. ???

11. ???

We want to model all of the above generically, in a language-independent manner.
Relation

Lifting!

Predicate

Lifting!

23

Question marks

Concrete/Abstract

8. Howe’s closure

9. Howe’s method

10. Logical predicates/relations

11. Fundamental Properties

8. ???

9. ???

10. ???

11. ???

We want to model all of the above generically, in a language-independent manner.
Relation

Lifting!

Predicate

Lifting!

23

Question marks

Concrete/Abstract

8. Howe’s closure

9. Howe’s method

10. Logical predicates/relations

11. Fundamental Properties

8. ???

9. ???

10. ???

11. ???

We want to model all of the above generically, in a language-independent manner.

Relation

Lifting!

Predicate

Lifting!

23

Question marks

Concrete/Abstract

8. Howe’s closure

9. Howe’s method

10. Logical predicates/relations

11. Fundamental Properties

8. ???

9. ???

10. ???

11. ???

We want to model all of the above generically, in a language-independent manner.
Relation

Lifting!

Predicate

Lifting!

23

Relational Reasoning

How to do program discourse, categorically

Key concept 1: If C is our base universe of discourse, we can form the categories

Rel(C) and Pred(C) of resp. (homogenous) relations and predicates on C. These are

the categories of subobjects on rep. X × X and X .

R S

X × X Y × Y

〈lR ,rR〉 〈lS ,rS 〉
f×f

P Q

X Y

p q

f

Key concept 2: We extend the functors to Rel(C) and Pred(C), a process that is

known as relation (or predicate) lifting [17].

Rel(C) Rel(C)

C C
|−|

Σ

|−|
Σ

Pred(C) Pred(C)

C C
|−|

Σ

|−|
Σ

Also, write PredX (C), RelX (C) for the lattices of resp. predicates and relations on X .

24

How to do program discourse, categorically

Key concept 1: If C is our base universe of discourse, we can form the categories

Rel(C) and Pred(C) of resp. (homogenous) relations and predicates on C. These are

the categories of subobjects on rep. X × X and X .

R S

X × X Y × Y

〈lR ,rR〉 〈lS ,rS 〉
f×f

P Q

X Y

p q

f

Key concept 2: We extend the functors to Rel(C) and Pred(C), a process that is

known as relation (or predicate) lifting [17].

Rel(C) Rel(C)

C C
|−|

Σ

|−|
Σ

Pred(C) Pred(C)

C C
|−|

Σ

|−|
Σ

Also, write PredX (C), RelX (C) for the lattices of resp. predicates and relations on X .

24

How to do program discourse, categorically

Key concept 1: If C is our base universe of discourse, we can form the categories

Rel(C) and Pred(C) of resp. (homogenous) relations and predicates on C. These are

the categories of subobjects on rep. X × X and X .

R S

X × X Y × Y

〈lR ,rR〉 〈lS ,rS 〉
f×f

P Q

X Y

p q

f

Key concept 2: We extend the functors to Rel(C) and Pred(C), a process that is

known as relation (or predicate) lifting [17].

Rel(C) Rel(C)

C C
|−|

Σ

|−|
Σ

Pred(C) Pred(C)

C C
|−|

Σ

|−|
Σ

Also, write PredX (C), RelX (C) for the lattices of resp. predicates and relations on X . 24

Act I, Induction. Part 1, Predicates.

Let P � µΣ be a predicate on terms (assume a typed syntax, for the heck of it).

Structural induction

1. (Repeat for every operation) For all t : τ1 _ τ2, s : τ1 such that Pτ1_τ2(t) and

Pτ1(s), then Pτ2(t s).

2. By induction, for all types τ and terms t : τ , Pτ (t).

Unary induction proof principle

1. Σ(P) represents 1-depth terms (operations) whose subterms are in P (Σ is the

canonical lifting). There is a Σ-algebra structure

Σ(P) ≤ ι?[P], where ι : ΣµΣ→ µΣ is the initial Σ-algebra.

2. As initial algebras have no proper subalgebras, P ∼= µΣ.
25

Act I, Induction. Part 2, Relations.

Let R � µΣ× µΣ be a relation on terms.

Structural induction (Fundamental Property)

1. (Repeat for every operation) For all t1, t2 : τ1 _ τ2, s1, s2 : τ1 such that

Rτ1_τ2(t1, t2) and Rτ1(s1, s2), then Rτ2(t2 s2, t2 s2).

2. Then for all types τ , relation Rτ is reflexive.

Binary induction proof principle

1. Σ(R) represents pairs of 1-depth terms with subterms in R. If there is

Σ(R) ≤ (ι× ι)?[R](that is, R is a congruence),

2. then ∆ ≤ R because all congruences on an initial algebra are reflexive.

26

Act II, Bisimulations. Prelude.

Simple go-to example (untyped syntax this time)

B(X ,Y) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

Rel(C)op × Rel(C) Rel(C)

Cop×C C

|−|op×|−|

B

|−|

B

Let R,S ⊆ µΣ× µΣ be relations. Then B(R,S) amounts to the following:

B(R,S) = {(t1, t2) | Q(t1, t2)} ∨ {f ∈ µΣµΣ | ∀t1, t2.R(t1, t2) =⇒ Q(f (t1), f (t2))},

aka, related inputs are mapped to related outputs!

27

Act II, Bisimulations. Prelude.

Simple go-to example (untyped syntax this time)

B(X ,Y) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

Rel(C)op × Rel(C) Rel(C)

Cop×C C

|−|op×|−|

B

|−|

B

Let R, S ⊆ µΣ× µΣ be relations. Then B(R,S) amounts to the following:

B(R,S) = {(t1, t2) | Q(t1, t2)} ∨ {f ∈ µΣµΣ | ∀t1, t2.R(t1, t2) =⇒ Q(f (t1), f (t2))},

aka, related inputs are mapped to related outputs!

27

Act II, Bisimulations. Prelude.

Simple go-to example (untyped syntax this time)

B(X ,Y) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

Rel(C)op × Rel(C) Rel(C)

Cop×C C

|−|op×|−|

B

|−|

B

Let P,Q ⊆ µΣ be predicates. Then B(P,Q) ⊆ µΣ + µΣµΣ amounts to the following:

B(P,Q) = {t | Q(t)} ∨ {f ∈ µΣµΣ | ∀t.P(t) =⇒ Q(f (t))},

aka, inputs in P are mapped to outputs in Q!

Let R,S ⊆ µΣ× µΣ be relations. Then

B(R, S) amounts to the following:

B(R,S) = {(t1, t2) | Q(t1, t2)} ∨ {f ∈ µΣµΣ | ∀t1, t2.R(t1, t2) =⇒ Q(f (t1), f (t2))},

aka, related inputs are mapped to related outputs!

27

Act II, Bisimulations. Prelude.

Simple go-to example (untyped syntax this time)

B(X ,Y) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

Rel(C)op × Rel(C) Rel(C)

Cop×C C

|−|op×|−|

B

|−|

B

Let R, S ⊆ µΣ× µΣ be relations. Then B(R,S) amounts to the following:

B(R,S) = {(t1, t2) | Q(t1, t2)} ∨ {f ∈ µΣµΣ | ∀t1, t2.R(t1, t2) =⇒ Q(f (t1), f (t2))},

aka, related inputs are mapped to related outputs!

27

Act II, Bisimulations. Part 1, Predicates.

Let P,Q � X be predicates on the state space of a coalgebra h : X → B(X ,X). We

say that P is a (Q-relative) (B)-invariant [18] if

P ≤ h?[B(Q,P)]

We say that an invariant P is logical if it is relative to itself.

Instantiate on γ : µΣ→ B(µΣ, µΣ). A predicate P is logical if the following hold:

1. If t = λx .s, then for all e with P(e), then P(s[e/x]).

2. If t → t ′ then P(t ′).

The above notion instantiates correctly in other settings (assuming the coalgebra is

setup correctly), e.g. typed: the tuple (t, s) : τ1 × τ2 is in P when Pτ1(t) and Pτ2(s).
28

Act II, Bisimulations. Part 2, Relations.

Bisimulations, logical relations and step-indexing [19]

Let h : X → B(X ,X) be a coalgebra and h̃ : X → B(X ,X) be a weakening of h

(think → vs its saturation/closure ⇒). We say that:

1. A relation R � X × X is a bisimulation if R ≤ (h × h̃)?[B(∆,R)].

2. A relation R � X × X is a logical relation if R ≤ (h × h̃)?[B(R,R)].

3. An ordinal-indexed family of relations (Rα� X × X)α is a step-indexed logical

relation if it forms a decreasing chain (i.e. Rα ≤ Rβ for all β < α) and satisfies

Rα+1 ≤ (h × h̃)?[B(Rα,Rα)] for all α.

29

Act II, Bisimulations. Part 2, Relations.

Bisimulations, logical relations and step-indexing [19]

Let h : X → B(X ,X) be a coalgebra and h̃ : X → B(X ,X) be a weakening of h

(think → vs its saturation/closure ⇒). We say that:

1. A relation R on X is a (B-)bisimulation (for h, h̃) if R ≤ (h × h̃)?[B(∆,R)].

2. A relation R on X is a (B-)logical relation (for h, h̃) if R ≤ (h × h̃)?[B(R,R)].

3. An ordinal-indexed family of relations (Rα� X × X)α is a (B-)step-indexed

logical relation (for h, h̃) if it forms a decreasing chain (i.e. Rα ≤ Rβ for all

β < α) and satisfies

Rα+1 ≤ (h × h̃)?[B(Rα,Rα)] for all α.

30

Act II, Bisimulations. Part 2, Relations.

Simple example

B(X ,Y) : Cop×C → C γ : µΣ→ P(B(µΣ, µΣ))

B(X ,Y) = Y + Y X γ(t) = {t ′} if t → t ′ and γ(λx .M) = {(e 7→ M[e/x])}

We will use the asymmetric Egli-Milner relation lifting for PB, P̃B.

Let γ̃ be the closure of γ under β reductions. A relation R ⊆ µΣ× µΣ is a

(P̃B)-bisimulation (for γ, γ̃) if for all t, s with R(t, s), the following are true:

• If t → t ′ then s ⇒ s ′ and R(t ′, s ′).

• For all e, if t
e−→ t ′, then s

e
=⇒ s ′ and R(t ′, s ′).

Applicative simulation!

31

Act II, Bisimulations. Part 2, Relations.

Simple example

B(X ,Y) : Cop×C → C γ : µΣ→ P(B(µΣ, µΣ))

B(X ,Y) = Y + Y X γ(t) = {t ′} if t → t ′ and γ(λx .M) = {(e 7→ M[e/x])}

We will use the asymmetric Egli-Milner relation lifting for PB, P̃B.

Notation (reminder and introduction)

• Write t
e−→ t ′ if t = λx .M and t ′ = M[e/x] = γ(t)(e).

• Write t ⇒ t ′ if t → t1 → · · · → tn → t ′.

• Write t
e

=⇒ t ′ if t → t1 → · · · → tn → t ′′ and t ′′
e−→ t ′.

• The system ⇒ is modelled by γ̃ : µΣ→ P(B(µΣ, µΣ)) (technically ⇒ is a

notation for γ̃).

Let γ̃ be the closure of γ under β reductions. A relation R ⊆ µΣ× µΣ is a

(P̃B)-bisimulation (for γ, γ̃) if for all t, s with R(t, s), the following are true:

• If t → t ′ then s ⇒ s ′ and R(t ′, s ′).

• For all e, if t
e−→ t ′, then s

e
=⇒ s ′ and R(t ′, s ′).

Applicative simulation!

31

Act II, Bisimulations. Part 2, Relations.

Simple example

B(X ,Y) : Cop×C → C γ : µΣ→ P(B(µΣ, µΣ))

B(X ,Y) = Y + Y X γ(t) = {t ′} if t → t ′ and γ(λx .M) = {(e 7→ M[e/x])}

We will use the asymmetric Egli-Milner relation lifting for PB, P̃B.

Let γ̃ be the closure of γ under β reductions. A relation R ⊆ µΣ× µΣ is a

(P̃B)-bisimulation (for γ, γ̃) if for all t, s with R(t, s), the following are true:

• If t → t ′ then s ⇒ s ′ and R(t ′, s ′).

• For all e, if t
e−→ t ′, then s

e
=⇒ s ′ and R(t ′, s ′).

Applicative simulation!
31

Act II, Bisimulations. Part 2, Relations.

Simple example

B(X ,Y) : Cop×C → C γ : µΣ→ P(B(µΣ, µΣ))

B(X ,Y) = Y + Y X γ(t) = {t ′} if t → t ′ and γ(λx .M) = {(e 7→ M[e/x])}

We will use the asymmetric Egli-Milner relation lifting for PB, P̃B.

Let γ̃ be the closure of γ under β reductions. A relation R ⊆ µΣ× µΣ is a

(P̃B)-logical relation (for γ, γ̃) if for all t, s with R(t, s), the following are true:

• If t → t ′ then s ⇒ s ′ and R(t ′, s ′).

• For all e1, e2 with R(e1, e2), if t
e1−→ t ′, then s

e2=⇒ s ′ and R(t ′, s ′).

Logical preorder! Kind of concurrent flavor when →,⇒ is used instead of ⇓,⇓.

32

Act II, Bisimulations. Part 2, Relations.

Simple example

B(X ,Y) : Cop×C → C γ : µΣ→ P(B(µΣ, µΣ))

B(X ,Y) = Y + Y X γ(t) = {t ′} if t → t ′ and γ(λx .M) = {(e 7→ M[e/x])}

We will use the asymmetric Egli-Milner relation lifting for PB, P̃B.

Let γ̃ be the closure of γ under β reductions. A relation R ⊆ µΣ× µΣ is a

(P̃B)-logical relation (for γ, γ̃) if for all t, s with R(t, s), the following are true:

• If t → t ′ then s ⇒ s ′ and R(t ′, s ′).

• For all e1, e2 with R(e1, e2), if t
e1−→ t ′, then s

e2=⇒ s ′ and R(t ′, s ′).

Logical preorder! Kind of concurrent flavor when →,⇒ is used instead of ⇓,⇓.

32

Act II, Bisimulations. Part 2, Relations.

Simple example

B(X ,Y) : Cop×C → C γ : µΣ→ P(B(µΣ, µΣ))

B(X ,Y) = Y + Y X γ(t) = {t ′} if t → t ′ and γ(λx .M) = {(e 7→ M[e/x])}

We will use the asymmetric Egli-Milner relation lifting for PB, P̃B.

Let γ̃ be the closure of γ under β reductions. A relation R ⊆ µΣ× µΣ is a

(P̃B)-logical relation (for γ, γ̃) if for all t, s with R(t, s), the following are true:

• If t → t ′ then s ⇒ s ′ and R(t ′, s ′).

• For all e1, e2 with R(e1, e2), if t
e1−→ t ′, then s

e2=⇒ s ′ and R(t ′, s ′).

Logical preorder! Kind of concurrent flavor when →,⇒ is used instead of ⇓,⇓.
32

Act II, Bisimulations. Part 2, Relations.

Simple example

B(X ,Y) : Cop×C → C γ : µΣ→ P(B(µΣ, µΣ))

B(X ,Y) = Y + Y X γ(t) = {t ′} if t → t ′ and γ(λx .M) = {(e 7→ M[e/x])}

We will use the asymmetric Egli-Milner relation lifting for PB, P̃B.

Let γ̃ be the closure of γ under β reductions. A family (Rα ⊆ µΣ× µΣ)α is a

step-indexed (P̃B)-logical relation (for γ, γ̃) if ∀α, β with β < α, Rα ≤ Rβ and for

all α, t, s with Rα+1(t, s), the following are true:

• If t → t ′ then s ⇒ s ′ and Rα(t ′, s ′).

• For all e1, e2 with Rα(e1, e2), if t
e1−→ t ′, then s

e2=⇒ s ′ and Rα(t ′, s ′).

33

Act II, Bisimulations. Part 2, Relations.

Simple example

B(X ,Y) : Cop×C → C γ : µΣ→ P(B(µΣ, µΣ))

B(X ,Y) = Y + Y X γ(t) = {t ′} if t → t ′ and γ(λx .M) = {(e 7→ M[e/x])}

We will use the asymmetric Egli-Milner relation lifting for PB, P̃B.

Let γ̃ be the closure of γ under β reductions. A family (Rα ⊆ µΣ× µΣ)α is a

step-indexed (P̃B)-logical relation (for γ, γ̃) if ∀α, β with β < α, Rα ≤ Rβ and for

all α, t, s with Rα+1(t, s), the following are true:

• If t → t ′ then s ⇒ s ′ and Rα(t ′, s ′).

• For all e1, e2 with Rα(e1, e2), if t
e1−→ t ′, then s

e2=⇒ s ′ and Rα(t ′, s ′).

33

Act II, Bisimulations. Part 2, Relations.

This was supposed to be an example on a typed λ-calculus, but I

ran out of time while preparing the slides. We can do it on the

board, depending on time.

34

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C
3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C
3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C
3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C
3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C

3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C

3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C
3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C
3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C
3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C
3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C
3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

35

Recall that relation lifting is algebraic and coalgebraic, and

independent of the Higher-order Abstract GSOS framework.

However, the marriage of algebra and coalgebra that HO Abstract
GSOS represents extends along their liftings :).

36

Howe’s method in higher-order Abstract GSOS, briefly

Motivation: We need congruence of applicative similarity, not of its strong version.

Plan: Redo Howe’s method using our abstract machinery, such that:

- We systematize it into a generic, language-independent method.

- Expose its core ideas, its language-specific part, and then simplify 2.

Key concept: Howe’s closure R̂: initial algebra (lfp) of an endofunctor on RelµΣ(C)!

For an applicative simulation R � µΣ× µΣ, R̂ = µS .R ∨ ι?[Σ(S)];R.

Results [22]: For R̂ to be a bisimulation, just show that “weakened” rules are sound:

t
s

=⇒ t ′

t s ⇒ t ′
X t ⇒ t ′

t s ⇒ t ′ s
X (Many thanks to dinaturality.)

2Howe’s method is complex, clunky, conceptually mysterious and unclear why it works. Shout-out to

people uncovering its mysteries (Dal Lago et al.[20], Borthelle et al. [21], Hirschowiz and Lafont [13]).

37

Howe’s method in higher-order Abstract GSOS, briefly

Motivation: We need congruence of applicative similarity, not of its strong version.

Plan: Redo Howe’s method using our abstract machinery, such that:

- We systematize it into a generic, language-independent method.

- Expose its core ideas, its language-specific part, and then simplify 2.

Key concept: Howe’s closure R̂: initial algebra (lfp) of an endofunctor on RelµΣ(C)!

For an applicative simulation R � µΣ× µΣ, R̂ = µS .R ∨ ι?[Σ(S)];R.

Results [22]: For R̂ to be a bisimulation, just show that “weakened” rules are sound:

t
s

=⇒ t ′

t s ⇒ t ′
X t ⇒ t ′

t s ⇒ t ′ s
X (Many thanks to dinaturality.)

2Howe’s method is complex, clunky, conceptually mysterious and unclear why it works. Shout-out to

people uncovering its mysteries (Dal Lago et al.[20], Borthelle et al. [21], Hirschowiz and Lafont [13]).

37

Howe’s method in higher-order Abstract GSOS, briefly

Motivation: We need congruence of applicative similarity, not of its strong version.

Plan: Redo Howe’s method using our abstract machinery, such that:

- We systematize it into a generic, language-independent method.

- Expose its core ideas, its language-specific part, and then simplify 2.

Key concept: Howe’s closure R̂: initial algebra (lfp) of an endofunctor on RelµΣ(C)!

For an applicative simulation R � µΣ× µΣ, R̂ = µS .R ∨ ι?[Σ(S)];R.

Results [22]: For R̂ to be a bisimulation, just show that “weakened” rules are sound:

t
s

=⇒ t ′

t s ⇒ t ′
X t ⇒ t ′

t s ⇒ t ′ s
X (Many thanks to dinaturality.)

2Howe’s method is complex, clunky, conceptually mysterious and unclear why it works. Shout-out to

people uncovering its mysteries (Dal Lago et al.[20], Borthelle et al. [21], Hirschowiz and Lafont [13]).

37

Howe’s method in higher-order Abstract GSOS, briefly

Motivation: We need congruence of applicative similarity, not of its strong version.

Plan: Redo Howe’s method using our abstract machinery, such that:

- We systematize it into a generic, language-independent method.

- Expose its core ideas, its language-specific part, and then simplify 2.

Key concept: Howe’s closure R̂: initial algebra (lfp) of an endofunctor on RelµΣ(C)!

For an applicative simulation R � µΣ× µΣ, R̂ = µS .R ∨ ι?[Σ(S)];R.

Results [22]: For R̂ to be a bisimulation, just show that “weakened” rules are sound:

t
s

=⇒ t ′

t s ⇒ t ′
X t ⇒ t ′

t s ⇒ t ′ s
X

(Many thanks to dinaturality.)

2Howe’s method is complex, clunky, conceptually mysterious and unclear why it works. Shout-out to

people uncovering its mysteries (Dal Lago et al.[20], Borthelle et al. [21], Hirschowiz and Lafont [13]).

37

Howe’s method in higher-order Abstract GSOS, briefly

Motivation: We need congruence of applicative similarity, not of its strong version.

Plan: Redo Howe’s method using our abstract machinery, such that:

- We systematize it into a generic, language-independent method.

- Expose its core ideas, its language-specific part, and then simplify 2.

Key concept: Howe’s closure R̂: initial algebra (lfp) of an endofunctor on RelµΣ(C)!

For an applicative simulation R � µΣ× µΣ, R̂ = µS .R ∨ ι?[Σ(S)];R.

Results [22]: For R̂ to be a bisimulation, just show that “weakened” rules are sound:

t
s

=⇒ t ′

t s ⇒ t ′
X t ⇒ t ′

t s ⇒ t ′ s
X (Many thanks to dinaturality.)

2Howe’s method is complex, clunky, conceptually mysterious and unclear why it works. Shout-out to

people uncovering its mysteries (Dal Lago et al.[20], Borthelle et al. [21], Hirschowiz and Lafont [13]).

37

Step-indexed Logical Relations

Time for some efficient reasoning in the Higher-order Abstract
GSOS framework!

38

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Question marks

Let’s go over the typical setting of Logical Relations.

Concrete/Abstract

8. Operational Semantics

9. What is a Logical Relation?

10. Construct that Logical

Relation, the chosen one

11. Laborious compatibility lemmas

12. Reflexivity

8. HO Abstract GSOS

9. R ≤ (h × h̃)?[B(R,R)]

10. Abstract Construction

Missing

11. ???

12. General induction principle

39

Constructing step-indexed logical relation, Coalgebraically

In standard settings, (step-indexed) logical relations are defined empirically, on a

per-case basis. Our approach systematizes the method. Let’s see how:

Step-indexed Henceforth Relation Transformer

Let B : Cop×C → C with a relation lifting B, and let c , c̃ : X → B(X ,X) be

coalgebras. For every R � X × X we define the step-indexed logical relation

(�B,c,c̃,αR � X × X)α by transfinite induction (writing �α for simplicity):

�0R = R,

�α+1R = �αR ∧ (c × c̃)?[B(�αR,�αR)],

�αR =
∧
β<α

�βR for limit ordinals α.

Under mild conditions, there exists ν with �ν+1R = �νR, which makes �νR logical.

For the logical relation, the “chosen one”, plug R = > = X × X .

40

Constructing step-indexed logical relation, Coalgebraically

In standard settings, (step-indexed) logical relations are defined empirically, on a

per-case basis. Our approach systematizes the method. Let’s see how:

Step-indexed Henceforth Relation Transformer

Let B : Cop×C → C with a relation lifting B, and let c , c̃ : X → B(X ,X) be

coalgebras. For every R � X × X we define the step-indexed logical relation

(�B,c,c̃,αR � X × X)α by transfinite induction (writing �α for simplicity):

�0R = R,

�α+1R = �αR ∧ (c × c̃)?[B(�αR,�αR)],

�αR =
∧
β<α

�βR for limit ordinals α.

Under mild conditions, there exists ν with �ν+1R = �νR, which makes �νR logical.

For the logical relation, the “chosen one”, plug R = > = X × X .

40

Constructing step-indexed logical relation, Coalgebraically

In standard settings, (step-indexed) logical relations are defined empirically, on a

per-case basis. Our approach systematizes the method. Let’s see how:

Step-indexed Henceforth Relation Transformer

Let B : Cop×C → C with a relation lifting B, and let c , c̃ : X → B(X ,X) be

coalgebras. For every R � X × X we define the step-indexed logical relation

(�B,c,c̃,αR � X × X)α by transfinite induction (writing �α for simplicity):

�0R = R,

�α+1R = �αR ∧ (c × c̃)?[B(�αR,�αR)],

�αR =
∧
β<α

�βR for limit ordinals α.

Under mild conditions, there exists ν with �ν+1R = �νR, which makes �νR logical.

For the logical relation, the “chosen one”, plug R = > = X × X . 40

Constructing step-indexed logical relation, Coalgebraically

L0
τ (Γ) = >τ (Γ) = {(t, s) | Γ ` t, s : τ}
Lα+1
τ = Lατ ∩ Sτ (Lα,Lα) ∩ Eτ (Lα) ∩ Vτ (Lα,Lα)

Lατ (Γ) =
⋂
β<α

Lατ (Γ) for limit ordinals α.

Sτ (Γ)(Q,R) = {(t, s) | for all ∆ and QΓ(x)(∆)(ux , vx) (x ∈ |Γ|),
one has Rτ (∆)(t[~u], s[~v])},

Eτ (Γ)(R) = {(t, s) | if t → t ′ then ∃s ′. s ⇒ s ′ ∧ Rτ (Γ)(t ′, s ′)},
Vτ1�τ2(Γ)(Q,R) = {(t, s) | if t = pairτ1,τ2

(t1, t2) then ∃s1, s2. s ⇒ pairτ1,τ2
(s1, s2)∧

Rτ1(Γ)(t1, s1) ∧ Rτ2(Γ)(t2, s2)},
Vµα.τ (Γ)(Q,R) = {(t, s) | if t = foldτ (t ′) then ∃s ′. s ⇒ foldτ (s ′) ∧ Rτ [µα.τ/α](Γ)(t ′, s ′)},
Vτ1_τ2(Γ)(Q,R) = {(t, s) | for all Qτ1(Γ)(e, e ′),

if t = λx .t ′ then ∃s ′. s ⇒ λx .s ′ ∧ Rτ2(Γ)(t ′[e/x], s ′[e ′/x])}. 41

Some results

Data: Higher-Order GSOS law of Σ over B in a suitable category C, liftings, weakening

of the operational model (the coalgebra on terms µΣ) and mild conditions on C.

Main theorem (informal)

Let R � µΣ× µΣ be a congruence. Assuming a lax-bialgebra condition. If R is a

congruence, then for all α, �αR is a congruence.

t
s

=⇒ t ′

t s ⇒ t ′
X t ⇒ t ′

t s ⇒ t ′ s
X

Corollary

1. For all α, �α> is a congruence.

2. �ν> is a congruence (and hence reflexive) and, for “reasonable” definitions of

contextual equivalence, sound w.r.t. contextual equivalence.

42

Some results

Data: Higher-Order GSOS law of Σ over B in a suitable category C, liftings, weakening

of the operational model (the coalgebra on terms µΣ) and mild conditions on C.

Main theorem (informal)

Let R � µΣ× µΣ be a congruence. Assuming a lax-bialgebra condition. If R is a

congruence, then for all α, �αR is a congruence.

t
s

=⇒ t ′

t s ⇒ t ′
X t ⇒ t ′

t s ⇒ t ′ s
X

Corollary

1. For all α, �α> is a congruence.

2. �ν> is a congruence (and hence reflexive) and, for “reasonable” definitions of

contextual equivalence, sound w.r.t. contextual equivalence.

42

The point of all this

Accept for a single slide that every higher-order operational semantics is a higher-order

GSOS law. You are presented with such semantics and looking for a sensible logical

relation, sound for contextual equivalence. What we’re saying is that the actual work

that needs to be done, the language-dependent part of the problem, is the following:

1. Decide what kinds of relational reasoning you’re looking for (define the lifting B).

2. Check that your notion of “weakening” is sensible w.r.t. the operational

semantics.

The intuition is that the standard compatibility lemmas contain lots of boilerplate,

contrived proof code that should be “automatic” under reasonable circumstances.

43

The point of all this

Accept for a single slide that every higher-order operational semantics is a higher-order

GSOS law. You are presented with such semantics and looking for a sensible logical

relation, sound for contextual equivalence. What we’re saying is that the actual work

that needs to be done, the language-dependent part of the problem, is the following:

1. Decide what kinds of relational reasoning you’re looking for (define the lifting B).

2. Check that your notion of “weakening” is sensible w.r.t. the operational

semantics.

The intuition is that the standard compatibility lemmas contain lots of boilerplate,

contrived proof code that should be “automatic” under reasonable circumstances.

43

The point of all this

Accept for a single slide that every higher-order operational semantics is a higher-order

GSOS law. You are presented with such semantics and looking for a sensible logical

relation, sound for contextual equivalence. What we’re saying is that the actual work

that needs to be done, the language-dependent part of the problem, is the following:

1. Decide what kinds of relational reasoning you’re looking for (define the lifting B).

2. Check that your notion of “weakening” is sensible w.r.t. the operational

semantics.

The intuition is that the standard compatibility lemmas contain lots of boilerplate,

contrived proof code that should be “automatic” under reasonable circumstances.

43

The point of all this

Accept for a single slide that every higher-order operational semantics is a higher-order

GSOS law. You are presented with such semantics and looking for a sensible logical

relation, sound for contextual equivalence. What we’re saying is that the actual work

that needs to be done, the language-dependent part of the problem, is the following:

1. Decide what kinds of relational reasoning you’re looking for (define the lifting B).

2. Check that your notion of “weakening” is sensible w.r.t. the operational

semantics.

The intuition is that the standard compatibility lemmas contain lots of boilerplate,

contrived proof code that should be “automatic” under reasonable circumstances.

43

The point of all this

It’s not just that higher-order abstract GSOS is cool and efficient.

By systematizing (step-indexed) logical relations, we show that,

assuming the operational semantics are minimally sane, the evident

logical relation should be reflexive and sound w.r.t. contextual

equivalence.

44

Logical Predicates

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.

- Write Λτ (Γ) for the set {t | Γ ` t : τ} and Λτ for the set {t | ∅ ` t : τ}.

2. A (type-indexed) predicate P � Λ, that can’t be proven inductively

- Family (Pτ ⊆ Λτ)τ∈Ty

- Strong normalization, type safety etc.

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Logical in the sense that

“For any term t and s in �P and of the suitable type, t · s is also in �P”.

4. Proceed by induction to prove that (the open extension of) �P holds.

45

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.

- Write Λτ (Γ) for the set {t | Γ ` t : τ} and Λτ for the set {t | ∅ ` t : τ}.
2. A (type-indexed) predicate P � Λ, that can’t be proven inductively

- Family (Pτ ⊆ Λτ)τ∈Ty

- Strong normalization, type safety etc.

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Logical in the sense that

“For any term t and s in �P and of the suitable type, t · s is also in �P”.

4. Proceed by induction to prove that (the open extension of) �P holds.

45

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.

- Write Λτ (Γ) for the set {t | Γ ` t : τ} and Λτ for the set {t | ∅ ` t : τ}.
2. A (type-indexed) predicate P � Λ, that can’t be proven inductively

- Family (Pτ ⊆ Λτ)τ∈Ty

- Strong normalization, type safety etc.

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Logical in the sense that

“For any term t and s in �P and of the suitable type, t · s is also in �P”.

4. Proceed by induction to prove that (the open extension of) �P holds.

45

The setting of Logical Predicates

1. An operational semantics of a higher-order language

- Typically a typed λ-calculus.

- Write Λτ (Γ) for the set {t | Γ ` t : τ} and Λτ for the set {t | ∅ ` t : τ}.
2. A (type-indexed) predicate P � Λ, that can’t be proven inductively

- Family (Pτ ⊆ Λτ)τ∈Ty

- Strong normalization, type safety etc.

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Logical in the sense that

“For any term t and s in �P and of the suitable type, t · s is also in �P”.

4. Proceed by induction to prove that (the open extension of) �P holds.

45

Strong Normalization

Definition (A standard logical predicate)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Definition (Open extension of SN)

~SNτ (t)(Γ) = For any closed substitution (∅ ` en : Γ(n))n∈|Γ|

such that ∀n ∈ |Γ|.SNΓ(n)(en), then SNτ (t[en/xn])

46

Strong Normalization

Definition (A standard logical predicate)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Definition (Open extension of SN)

~SNτ (t)(Γ) = For any closed substitution (∅ ` en : Γ(n))n∈|Γ|

such that ∀n ∈ |Γ|.SNΓ(n)(en), then SNτ (t[en/xn])

46

Strong Normalization

One annoying case of the proof is that of λ-abstraction Γ ` λx : τ1.t : τ1 _ τ2.

Given a substitution (∅ ` en : Γ(n))n∈|Γ| satisftying SN, we have to:

• Push the substitution inside the λ-abstraction, try to prove that the whole term is

in SN, for that reason consider what happens when we have terms such as

(λx : τ1.t
′) · s with SNτ1(s) for the substituted t ′, think back to what happens

during β-reduction, reflect on properties of substitution etc.

Complex language =⇒ complex argument...

47

The goal of this talk

I will argue for two directions of abstraction, via

Higher-order Abstract GSOS

SN �P

SNγ �γP

Any predicate P

Any semantics γ

Any predicate PAny predicate P

+Efficient

reasoning!

48

The goal of this talk

I will argue for two directions of abstraction, via

Higher-order Abstract GSOS

SN �P

SNγ �γP

Any predicate P

Any semantics γ

Any predicate PAny predicate P

+Efficient

reasoning!

48

Dissecting the logical predicate (1)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Idea : Write t
s

=⇒ t ′ if t ⇓ λx : τ1.M and t ′ = M[s/x]

V

unit (t) = ⇓unit (t)

V

τ1_τ2
(t) = ⇓τ1_τ2

t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧
V

τ1
(s) =⇒

V

τ2
(t ′))

Idea : Abstract away from the predicate ⇓

49

Dissecting the logical predicate (1)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Idea : Write t
s

=⇒ t ′ if t ⇓ λx : τ1.M and t ′ = M[s/x]

V

unit (t) = ⇓unit (t)

V

τ1_τ2
(t) = ⇓τ1_τ2

t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧
V

τ1
(s) =⇒

V

τ2
(t ′))

Idea : Abstract away from the predicate ⇓

49

Dissecting the logical predicate (1)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Idea : Write t
s

=⇒ t ′ if t ⇓ λx : τ1.M and t ′ = M[s/x]

V

unit (t) = ⇓unit (t)

V

τ1_τ2
(t) = ⇓τ1_τ2

t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧
V

τ1
(s) =⇒

V

τ2
(t ′))

Idea : Abstract away from the predicate ⇓

49

Dissecting the logical predicate (1)

SNunit (t) = ⇓unit (t)

SNτ1_τ2 (t) = ⇓τ1_τ2
(t) ∧ (∀s : τ1. SNτ1(s) =⇒ SNτ2(t · s))

Idea : Write t
s

=⇒ t ′ if t ⇓ λx : τ1.M and t ′ = M[s/x]

V

unit (t) = ⇓unit (t)

V

τ1_τ2
(t) = ⇓τ1_τ2

t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧
V

τ1
(s) =⇒

V

τ2
(t ′))

Idea : Abstract away from the predicate ⇓

49

Dissecting the logical predicate (2)

�Punit (t) = Punit (t)

�Pτ1_τ2 (t) = Pτ1_τ2 t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧�Pτ1 (s) =⇒ �Pτ2 (t ′))

Idea : Move one from ⇒ to the more fundamental →

�Punit(t) = Punit(t)

�

greatest subset of Λτ1_τ2

Pτ1_τ2(t) =⇒ Pτ1_τ2(t) ∧

�Pτ1_τ2(t ′) if t → t ′

�Pτ1(s) =⇒ �Pτ2(t ′) if t
s−→ t ′

50

Dissecting the logical predicate (2)

�Punit (t) = Punit (t)

�Pτ1_τ2 (t) = Pτ1_τ2 t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧�Pτ1 (s) =⇒ �Pτ2 (t ′))

Idea : Move one from ⇒ to the more fundamental →

�Punit(t) = Punit(t)

�

greatest subset of Λτ1_τ2

Pτ1_τ2(t) =⇒ Pτ1_τ2(t) ∧

�Pτ1_τ2(t ′) if t → t ′

�Pτ1(s) =⇒ �Pτ2(t ′) if t
s−→ t ′

50

Dissecting the logical predicate (2)

�Punit (t) = Punit (t)

�Pτ1_τ2 (t) = Pτ1_τ2 t ∧ (∀s : τ1. t
s

=⇒ t ′ ∧�Pτ1 (s) =⇒ �Pτ2 (t ′))

Idea : Move one from ⇒ to the more fundamental →

�Punit(t) = Punit(t)

�

greatest subset of Λτ1_τ2

Pτ1_τ2(t) =⇒ Pτ1_τ2(t) ∧

�Pτ1_τ2(t ′) if t → t ′

�Pτ1(s) =⇒ �Pτ2(t ′) if t
s−→ t ′

50

Induction up to �· on STLC

Theorem

Let P � Λ be any predicate on closed terms. Then P is true if all of the following

are true:

1. the unit expression e : unit satisfies �unitP Punit,

2. for all closed application terms t s such that �τ1_τ2P(t) and �τ1P(s), we have

�τ2P(t s) Pτ2(t s), and

3. for all λ-abstractions λx : τ1. t : τ1 _ τ2, such that λx : τ1. t is in the open

extension of �P and given a substitution ~e that satisfies �P, (λx : τ1. t)[~e/~x], we

have that (λx : τ1. t)[~e/~x] is in �P, P.

Proof.

Instantiate [18, Th. 36] with (Th36.P)τ (∅) = Pτ and (Th36.P)τ (Γ 6= ∅) = >.

51

Let’s try this out!

Proving strong normalization for STLC

1. ⇓unit (e);

2. ⇓τ2 (t s) with �τ1_τ2 ⇓ (t) and �τ1 ⇓ (s);

3. ⇓τ1_τ2 (λx : τ1. t) (what t can do is irrelevant in this case).

Proof.

(1) and (3) are trivial, (2) is straightforward once you realize that �Q is an invariant

w.r.t. → for all Q.

52

Let’s try this out!

Proving strong normalization for STLC

1. ⇓unit (e);

2. ⇓τ2 (t s) with �τ1_τ2 ⇓ (t) and �τ1 ⇓ (s);

3. ⇓τ1_τ2 (λx : τ1. t) (what t can do is irrelevant in this case).

Proof.

(1) and (3) are trivial, (2) is straightforward once you realize that �Q is an invariant

w.r.t. → for all Q.

52

Objective Complete

Let’s explore the other direction

SN �P

SNγ �γP

Any predicate P

Any semantics γAny semantics γ +Efficient

reasoning!

53

Objective Complete

Let’s explore the other direction

SN �P

SNγ �γP

Any predicate P

Any semantics γAny semantics γ +Efficient

reasoning!

53

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

54

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

54

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

54

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

54

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty

- Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

54

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

54

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

54

The (vanilla) abstract setting of Logical Predicates

1. An operational semantics of a higher-order language is given.

Concrete/Abstract

- (The model generated by)

Operational Rules t→t′

t·s→t′·s

i. Coalgebra γ : µΣ→ B(µΣ, µΣ),

ii. on initial algebra ι : ΣµΣ→ µΣ.

2. A (type-indexed) predicate P � µΣ is given.

- Family (Pτ ⊆ Λτ)τ∈Ty - Monomorphism P � µΣ

3. We construct a suitable logical predicate over P, say �P, which implies P.

- Empirical, mysterious, problem-

specific logical predicate SN

- Generic predicate transformer

�γ,B : PredµΣ(C)→ PredµΣ(C)

54

(Vanilla) Logical Predicates proof method in the abstract

Assuming the following:

1. An initial algebra (object of terms) ΣµΣ
ι−→ µΣ,

2. an “operational semantics” morphism µΣ→ B(µΣ, µΣ) for some bifunctor

B : Cop×C → C,

3. and logical predicates �(−),

the proof method of logical predicates amount to the following:

Fundamental Property

As initial algebras have no proper subalgebras, then

Σ(�P) ≤ ι?[�P] =⇒ �P ∼= µΣ =⇒ P ∼= µΣ.

55

Categorical machinery

B(X ,Y) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

For example, B(P,Q) ⊆ µΣ + µΣµΣ is the disjoint union of (i) the set {t | Q(t)} and

(ii) the set of functions f ∈ µΣµΣ that map inputs in P to outputs in Q.

56

Categorical machinery

B(X ,Y) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

For example, B(P,Q) ⊆ µΣ + µΣµΣ is the disjoint union of (i) the set {t | Q(t)} and

(ii) the set of functions f ∈ µΣµΣ that map inputs in P to outputs in Q.

56

Categorical machinery

B(X ,Y) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

For example, B(P,Q) ⊆ µΣ + µΣµΣ is the disjoint union of (i) the set {t | Q(t)} and

(ii) the set of functions f ∈ µΣµΣ that map inputs in P to outputs in Q.

56

Logical Predicates

Relative invariant

Let c : Y → B(X ,Y) be a B(X ,−)-coalgebra. Given predicates S � X , P � Y , we

say that P is an S-relative (B-)invariant (for c) if

P ≤ c?[B(S ,P)].

Logical Predicate

A predicate P � µΣ is logical (for γ) if it is a P-relative B-invariant.

A predicate P is logical if for all t ∈ µΣ, P(t) implies:

1. If t → t ′, then P(t ′) (with ND: if ∃t. t → t ′, then P(t ′)).

2. For all s, if t
s−→ t ′ and P(s), then P(t ′).

57

Logical Predicates

Relative invariant

Let c : Y → B(X ,Y) be a B(X ,−)-coalgebra. Given predicates S � X , P � Y , we

say that P is an S-relative (B-)invariant (for c) if

P ≤ c?[B(S ,P)].

Logical Predicate

A predicate P � µΣ is logical (for γ) if it is a P-relative B-invariant.

A predicate P is logical if for all t ∈ µΣ, P(t) implies:

1. If t → t ′, then P(t ′) (with ND: if ∃t. t → t ′, then P(t ′)).

2. For all s, if t
s−→ t ′ and P(s), then P(t ′).

57

Logical Predicates

Relative invariant

Let c : Y → B(X ,Y) be a B(X ,−)-coalgebra. Given predicates S � X , P � Y , we

say that P is an S-relative (B-)invariant (for c) if

P ≤ c?[B(S ,P)].

Logical Predicate

A predicate P � µΣ is logical (for γ) if it is a P-relative B-invariant.

A predicate P is logical if for all t ∈ µΣ, P(t) implies:

1. If t → t ′, then P(t ′) (with ND: if ∃t. t → t ′, then P(t ′)).

2. For all s, if t
s−→ t ′ and P(s), then P(t ′).

57

Logical Predicates

Relative invariant

Let c : Y → B(X ,Y) be a B(X ,−)-coalgebra. Given predicates S � X , P � Y , we

say that P is an S-relative (B-)invariant (for c) if

P ≤ c?[B(S ,P)].

Logical Predicate

A predicate P � µΣ is logical (for γ) if it is a P-relative B-invariant.

A predicate P is logical if for all t ∈ µΣ, P(t) implies:

1. If t → t ′, then P(t ′) (with ND: if ∃t. t → t ′, then P(t ′)).

2. For all s, if t
s−→ t ′ and P(s), then P(t ′).

57

One logical predicate to rule them all

The �

Under certain conditions, the most important being that the predicate lifting B is

predicate-contractive, for every predicate P � X on the state space of our

coalgebra X → B(X ,X) (i.e. a program property), there exists a certain “large”

predicate �P such that:

1. �P ≤ P

2. �P ≤ c?[B(�P,�P)] (i.e. �P is logical)

3. �P is the largest �P-relative invariant.

Conclusion/translation: The lifting being defined inductively on types is sufficient for

the existence of this magical, suitable logical predicate.

58

One logical predicate to rule them all

The �

Under certain conditions, the most important being that the predicate lifting B is

predicate-contractive, for every predicate P � X on the state space of our

coalgebra X → B(X ,X) (i.e. a program property), there exists a certain “large”

predicate �P such that:

1. �P ≤ P

2. �P ≤ c?[B(�P,�P)] (i.e. �P is logical)

3. �P is the largest �P-relative invariant.

Conclusion/translation: The lifting being defined inductively on types is sufficient for

the existence of this magical, suitable logical predicate.

58

Induction up to �

The definition of logicality and � systematizes the logical predicates proof method, but

where is the “efficient reasoning”?

Induction up to �

For a certain class of higher-order GSOS laws, instead of laboriously showing

Σ(�P) ≤ ι?[�P], it suffices to show the much simpler Σ(�P) ≤ ι?[P].

Note: Things are a bit more complex in languages with binding and substitution due to

contractivity considerations, but the principle is the same. This explains the need to

extend the predicate to open terms.

Induction up to �·
For a certain class of λ-laws, instead of laboriously showing Σ(�·P) ≤ ι?[�·P], it

suffices to show the much simpler Σ(�P) ≤ ι?[P].

59

Induction up to �

The definition of logicality and � systematizes the logical predicates proof method, but

where is the “efficient reasoning”?

Induction up to �

For a certain class of higher-order GSOS laws, instead of laboriously showing

Σ(�P) ≤ ι?[�P], it suffices to show the much simpler Σ(�P) ≤ ι?[P].

Note: Things are a bit more complex in languages with binding and substitution due to

contractivity considerations, but the principle is the same. This explains the need to

extend the predicate to open terms.

Induction up to �·
For a certain class of λ-laws, instead of laboriously showing Σ(�·P) ≤ ι?[�·P], it

suffices to show the much simpler Σ(�P) ≤ ι?[P].

59

Induction up to �

The definition of logicality and � systematizes the logical predicates proof method, but

where is the “efficient reasoning”?

Induction up to �

For a certain class of higher-order GSOS laws, instead of laboriously showing

Σ(�P) ≤ ι?[�P], it suffices to show the much simpler Σ(�P) ≤ ι?[P].

Note: Things are a bit more complex in languages with binding and substitution due to

contractivity considerations, but the principle is the same.

This explains the need to

extend the predicate to open terms.

Induction up to �·
For a certain class of λ-laws, instead of laboriously showing Σ(�·P) ≤ ι?[�·P], it

suffices to show the much simpler Σ(�P) ≤ ι?[P].

59

Induction up to �

The definition of logicality and � systematizes the logical predicates proof method, but

where is the “efficient reasoning”?

Induction up to �

For a certain class of higher-order GSOS laws, instead of laboriously showing

Σ(�P) ≤ ι?[�P], it suffices to show the much simpler Σ(�P) ≤ ι?[P].

Note: Things are a bit more complex in languages with binding and substitution due to

contractivity considerations, but the principle is the same. This explains the need to

extend the predicate to open terms.

Induction up to �·
For a certain class of λ-laws, instead of laboriously showing Σ(�·P) ≤ ι?[�·P], it

suffices to show the much simpler Σ(�P) ≤ ι?[P].

59

Thank you!

60

Future Work

61

Bibliography i

References

D. Turi, G. D. Plotkin, “Towards a mathematical operational semantics”, in

12th Annual IEEE Symposium on Logic in Computer Science (LICS 1997), 1997, pp. 280–291. doi: 10.1109/LICS.1997.614955.

M. P. Fiore, D. Turi, “Semantics of name and value passing”, in 16th Annual IEEE Symposium on Logic in Computer Science (LICS 2001),

IEEE Computer Society, 2001, pp. 93–104. doi: 10.1109/LICS.2001.932486.

F. Bartels, “On generalised coinduction and probabilistic specification formats: Distributive laws in coalgebraic modelling”, English,

PhD thesis, Vrije Universiteit Amsterdam, 2004.

M. P. Fiore, S. Staton, “A congruence rule format for name-passing process calculi from mathematical structural operational semantics”, in

21st Annual IEEE Symposium on Logic in Computer Science, LICS’06, IEEE Computer Society, 2006, pp. 49–58. doi:

10.1109/LICS.2006.7. [Online]. Available: https://doi.org/10.1109/LICS.2006.7.

62

https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1109/LICS.2001.932486
https://doi.org/10.1109/LICS.2006.7
https://doi.org/10.1109/LICS.2006.7

Bibliography ii

M. Miculan, M. Peressotti, “Structural operational semantics for non-deterministic processes with quantitative aspects”,

Theor. Comput. Sci., vol. 655, pp. 135–154, 2016. doi: 10.1016/j.tcs.2016.01.012. [Online]. Available:

https://doi.org/10.1016/j.tcs.2016.01.012.

B. Klin, V. Sassone, “Structural operational semantics for stochastic process calculi”, in

11th International Conference Foundations of Software Science and Computational Structures, FOSSACS’08, R. M. Amadio, Ed., ser. LNCS,

vol. 4962, Springer, 2008, pp. 428–442. doi: 10.1007/978-3-540-78499-9_30. [Online]. Available:

https://doi.org/10.1007/978-3-540-78499-9_30.

F. Abou-Saleh, D. Pattinson, “Towards effects in mathematical operational semantics”, in

Mathematical Foundations of Programming Semantics, MFPS 2011, M. W. Mislove, J. Ouaknine, Eds., ser. ENTCS, vol. 276, Elsevier, 2011,

pp. 81–104. doi: 10.1016/j.entcs.2011.09.016.

——,“Comodels and effects in mathematical operational semantics”, in

Foundations of Software Science and Computation Structures - 16th International Conference, FOSSACS 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings,

F. Pfenning, Ed., ser. Lecture Notes in Computer Science, vol. 7794, Springer, 2013, pp. 129–144. doi: 10.1007/978-3-642-37075-5_9.

[Online]. Available: https://doi.org/10.1007/978-3-642-37075-5_9.

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, H. Urbat, “Stateful structural operational semantics”, in

7th International Conference on Formal Structures for Computation and Deduction, FSCD’22, A. P. Felty, Ed., ser. LIPIcs, vol. 228, Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2022, 30:1–30:19. doi: 10.4230/LIPIcs.FSCD.2022.30. [Online]. Available:

https://doi.org/10.4230/LIPIcs.FSCD.2022.30.

63

https://doi.org/10.1016/j.tcs.2016.01.012
https://doi.org/10.1016/j.tcs.2016.01.012
https://doi.org/10.1007/978-3-540-78499-9_30
https://doi.org/10.1007/978-3-540-78499-9_30
https://doi.org/10.1016/j.entcs.2011.09.016
https://doi.org/10.1007/978-3-642-37075-5_9
https://doi.org/10.1007/978-3-642-37075-5_9
https://doi.org/10.4230/LIPIcs.FSCD.2022.30
https://doi.org/10.4230/LIPIcs.FSCD.2022.30

Bibliography iii

H. Watanabe, “Well-behaved translations between structural operational semantics”, Electr. Notes Theor. Comput. Sci., vol. 65, no. 1,

pp. 337–357, 2002. doi: 10.1016/S1571-0661(04)80372-4. [Online]. Available: https://doi.org/10.1016/S1571-0661(04)80372-4.

B. Klin, B. Nachyla, “Presenting morphisms of distributive laws”, in

6th Conference on Algebra and Coalgebra in Computer Science, CALCO’15, ser. LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,

2015, pp. 190–204. doi: 10.4230/LIPIcs.CALCO.2015.190. [Online]. Available: https://doi.org/10.4230/LIPIcs.CALCO.2015.190.

S. Tsampas, A. Nuyts, D. Devriese, F. Piessens, “A categorical approach to secure compilation”, in

15th IFIP WG 1.3 International Workshop on Coalgebraic Methods in Computer Science, CMCS’20, D. Petrisan, J. Rot, Eds., ser. LNCS,

vol. 12094, Springer, 2020, pp. 155–179. doi: 10.1007/978-3-030-57201-3_9.

T. Hirschowitz, A. Lafont, “A categorical framework for congruence of applicative bisimilarity in higher-order languages”,

Log. Methods Comput. Sci., vol. 18, no. 3, 2022. doi: 10.46298/lmcs-18(3:37)2022. [Online]. Available:

https://doi.org/10.46298/lmcs-18(3:37)2022.

H. B. Curry, “Grundlagen der kombinatorischen Logik”, Am. J. Math., vol. 52, no. 3, pp. 509–536, 1930, issn: 00029327, 10806377.

[Online]. Available: http://www.jstor.org/stable/2370619 (visited on 05/18/2022).

M. P. Fiore, G. D. Plotkin, D. Turi, “Abstract syntax and variable binding”, in

14th Annual IEEE Symposium on Logic in Computer Science (LICS 1999), IEEE Computer Society, 1999, pp. 193–202. doi:

10.1109/LICS.1999.782615.

64

https://doi.org/10.1016/S1571-0661(04)80372-4
https://doi.org/10.1016/S1571-0661(04)80372-4
https://doi.org/10.4230/LIPIcs.CALCO.2015.190
https://doi.org/10.4230/LIPIcs.CALCO.2015.190
https://doi.org/10.1007/978-3-030-57201-3_9
https://doi.org/10.46298/lmcs-18(3:37)2022
https://doi.org/10.46298/lmcs-18(3:37)2022
http://www.jstor.org/stable/2370619
https://doi.org/10.1109/LICS.1999.782615

Bibliography iv

S. Goncharov, S. Milius, L. Schröder, S. Tsampas, H. Urbat, “Towards a higher-order mathematical operational semantics”, in

50th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2023), ser. Proc. ACM Program. Lang. Vol. 7, ACM,

2023. doi: 10.1145/3571215.

A. Kurz, J. Velebil, “Relation lifting, a survey”, Journal of Logical and Algebraic Methods in Programming, Relational and Algebraic

Methods in Computer Science, vol. 85, no. 4, pp. 475–499, 2016, issn: 2352-2208. doi: 10.1016/j.jlamp.2015.08.002.

S. Goncharov, A. Santamaria, L. Schröder, S. Tsampas, H. Urbat, “Logical predicates in higher-order mathematical operational semantics”,,

N. Kobayashi, J. Worrell, Eds., 2024.

S. Goncharov, S. Milius, S. Tsampas, H. Urbat, “Bialgebraic reasoning on higher-order program equivalence”, in

39th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2024), Preprint: https://arxiv.org/abs/2402.00625, IEEE

Computer Society Press, 2024. doi: 10.1145/3661814.3662099.

U. Dal Lago, F. Gavazzo, P. B. Levy, “Effectful applicative bisimilarity: Monads, relators, and Howe’s method”, in

32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2017), IEEE Computer Society, 2017, pp. 1–12. doi:

10.1109/LICS.2017.8005117.

P. Borthelle, T. Hirschowitz, A. Lafont, “A cellular Howe theorem”, in

35th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’20, H. Hermanns, L. Zhang, N. Kobayashi, D. Miller, Eds., ACM,

2020, pp. 273–286. doi: 10.1145/3373718.3394738. [Online]. Available: https://doi.org/10.1145/3373718.3394738.

65

https://doi.org/10.1145/3571215
https://doi.org/10.1016/j.jlamp.2015.08.002
https://arxiv.org/abs/2402.00625
https://doi.org/10.1145/3661814.3662099
https://doi.org/10.1109/LICS.2017.8005117
https://doi.org/10.1145/3373718.3394738
https://doi.org/10.1145/3373718.3394738

Bibliography v

H. Urbat, S. Tsampas, S. Goncharov, S. Milius, L. Schröder, “Weak similarity in higher-order mathematical operational semantics”, in

38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2023), IEEE Computer Society Press, 2023. doi:

10.1109/LICS56636.2023.10175706.

66

https://doi.org/10.1109/LICS56636.2023.10175706

	HO-MOS or Higher-order Abstract GSOS
	Relational Reasoning
	Step-indexed Logical Relations
	Logical Predicates
	References

