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Patterns in Formal (Operational) Methods

1. Prove property X for a specific language A (likewise for a relational property)

i. Design an operational semantics

ii. Pick a method (e.g. logical relations, Howe’s method, etc.)

iii. Implement from scratch

2. Prove property X for a class of languages A

i. Pick a simple representative in A

ii. Design an operational semantics

iii. Implement from scratch

iv. Argue informally that this is a deep, insightful solution
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Patterns in Formal (Operational) Methods

1. Prove property X for a specific language A (likewise for a relational property)

i. Design an operational semantics

ii. Pick a method (e.g. logical relations, Howe’s method, etc.)

iii. Implement from scratch (hard, empirical, time-consuming)

2. Prove property X for a class of languages A

i. Pick a simple representative in A

ii. Design an operational semantics

iii. Implement from scratch (hard, empirical, time-consuming)
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Past and future

• Operational methods, especially logical relations, has seen tremendous growth and

successes in the past 30-odd years.

• Bright future ahead, no doubt, but...

• Can we make improve their scaling and stop reinventing the wheel?

Systematize

Generalize

Unify
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MOS, aka Abstract GSOS, an exercise in composing mathematical concepts

p
a−→ p′

p || q a−→

Structural Op. Sem.

p′ || q

ΣX X BX

Σ(X × BX ) B(Σ?X )

Bialgebras

g

Σ(id,h)

h

ρX

B(g?)

Coalgebra

Behavior

PL Algebra

Bialgebra

Syntax

MOS

4



MOS, aka Abstract GSOS, an exercise in composing mathematical concepts

p
a−→ p′

p || q a−→

Structural Op. Sem.

p′ || q

ΣX X BX

Σ(X × BX ) B(Σ?X )

Bialgebras

g

Σ(id,h)

h

ρX

B(g?)

Coalgebra

Behavior

PL Algebra

Bialgebra

Syntax

MOS

4



MOS, aka Abstract GSOS, an exercise in composing mathematical concepts

p
a−→ p′

p || q a−→

Structural Op. Sem.

p′ || q

ΣX X BX

Σ(X × BX ) B(Σ?X )

Bialgebras

g

Σ(id,h)

h

ρX

B(g?)

Coalgebra

Behavior

PL Algebra

Bialgebra

Syntax

MOS

4



MOS, aka Abstract GSOS, an exercise in composing mathematical concepts

p
a−→ p′

p || q a−→

Structural Op. Sem.

p′ || q

ΣX X BX

Σ(X × BX ) B(Σ?X )

Bialgebras

g

Σ(id,h)

h

ρX

B(g?)

Coalgebra

Behavior

PL Algebra

Bialgebra

Syntax

MOS

4



MOS, aka Abstract GSOS, an exercise in composing mathematical concepts

p
a−→ p′

p || q a−→

Structural Op. Sem.

p′ || q

ΣX X BX

Σ(X × BX ) B(Σ?X )

Bialgebras

g

Σ(id,h)

h

ρX

B(g?)

Coalgebra

Behavior

PL Algebra

Bialgebra

Syntax

MOS

4



MOS, aka Abstract GSOS, an exercise in composing mathematical concepts

p
a−→ p′

p || q a−→

Structural Op. Sem.

p′ || q

ΣX X BX

Σ(X × BX ) B(Σ?X )

Bialgebras

g

Σ(id,h)

h

ρX

B(g?)

Coalgebra

Behavior

PL Algebra

Bialgebra

Syntax

MOS

4



“Why have I never heard of this?”

Pros/Cons

Precise, elegant modelling of

operational semantics

Great with (first-order) process

calculi [1]–[4]

Effortless congruence results

Allows the study of systems at

a high level of generality

No higher-order languages

Poor with imperative languages

What about weak bisimilarity,

or =ctx?

Categorical nonsense
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Higher-Order Abstract GSOS, a research programme

Higher-order

Abstract GSOS

(POPL’23, JFP)

Programming

Paradigms

Side-effects,

Exceptions

(WIP)

Probabilistic,

Behavioural

Distances

Call-by-value

(POPL’25)

Mechanization

Proofs

User interface

Secure

Compilation
Maps of HO

GSOS laws

Fully abstract

compilation

Secure

Compilation

Criteria

Reasoning

Methods

Howe’s

Method

(LICS’23)

Logical

Relations

(FoSSaCS’24,

LICS’24)

Environmental

Bisimulations
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Overview

HO-MOS or

Higher-order Abstract GSOS

Relational Reasoning

Abstract Reasoning with

Step-indexed Logical Relations
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HO-MOS or

Higher-order Abstract GSOS



Abstract GSOS

Operational rules

p
a−→ p′

p || q a−→ p′ || q
∼=

GSOS laws: natural transformations

ρX : Σ(X × BX )︸ ︷︷ ︸
premises

→ B(Σ∗X )︸ ︷︷ ︸
conclusion

for functors Σ,B : C → C representing syntax

and behaviour (e.g. B = PL
f ).

I Operational model µΣ

(inductively defined) programs

→ B(µΣ), denotational model Σ(νB)→ νB

(coinductive) behaviours

.

I Key feature: compositionality, i.e. bisimilarity is a congruence:

pi ∼ qi (i = 1, . . . , n)
f ∈Σ
==⇒ f(p1, . . . , pn) ∼ f(q1, . . . , qn).

I Scope: first-order (CCS, π-calculus, . . . ), higher-order (λ-calculus, SKI calculus)
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From first-order to higher-order

Higher-order languages require behaviours like BX = XX .

This is not an endofunctor – but

B(X ,Y ) = Y X

is a bifunctor contravariant in X and covariant in Y .

Key idea for higher-order abstract GSOS 1

endofunctors B : C → C + natural transformations

⇓

bifunctors B : Cop×C → C + dinatural transformations.

1That part was straightfoward, the modelling of the λ-calculus and the compositionality of the

semantics, not so much .
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SKIu combinator calculus

S
t−→ S ′(t) S ′(p)

t−→ S ′′(p, t) S ′′(p, q)
t−→ (p t) (q t)

K
t−→ K ′(t) K ′(p)

t−→ p I
t−→ t

p → p′

p q → p′ q

p
q−→ p′

p q → p′

Figure 1: Operational semantics of the SKIu calculus, our version of the SKI calculus, invented

by Curry [10]. SKIu in instance of an HO specification, a simple format of ours [5, §3].

Disclaimer: This is just a convenient example to introduce HO-MOS. The latter can

do the λ-calculus, typed or untyped, with simple or recursive types, etc.

11
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SKIu combinator calculus

S ′′(p, q)

combinator

t−→ (p t) (q t)

p → p′

p q → p′ q

p
q−→ p′

p q → p′
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A combinator calculus

S ′′(p, q)

combinator

t−→ (p t) (q t)

p → p′

p q

application

→ p′ q

p
q−→ p′

p q → p′
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A combinator calculus

S ′′(p, q)

combinator

t

Labels can be a terms!

−→ (p t) (q t)

p → p′

p q

application

→ p′ q

p
q−→ p′

p q → p′
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Higher-order GSOS laws

Definition

A higher-order GSOS law of Σ: C → C (modelling the syntax) over B : Cop×C → C
(modelling higher-order behaviour) is a family of morphisms

ρX ,Y : Σ(X × B(X ,Y ))→ B(X ,Σ?(X + Y ))

dinatural in X ∈ C and natural in Y ∈ C.

12



Higher-Order Mathematical Operational Semantics

Proposition

For every finitary signature Σ̌, with associated endofunctor Σ: Set→ Set, HO
specifications are in a bijective correspondence with higher-order GSOS laws of Σ

over B(X ,Y ) = Y + Y X .

p
q−−→ p′

p q −→ p′

∼=

ρX :
∐
f∈Σ̌

( X × ( Y + Y
X

))ar(f) → Σ∗( X + Y )
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Higher-Order Abstract GSOS

Operational rules

p
q−→ p′

p q → p′

(λx .p) q → p[q/x ]

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y ))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y ))︸ ︷︷ ︸
conclusion

For combinator calculi, we have

C = Set

ΣX = 1 + X × X + . . .

B(X ,Y ) = Y + Y X

β-reduction or combinator

14



Higher-Order Abstract GSOS

Operational rules

p
q−→ p′

p q → p′

(λx .p) q → p[q/x ]

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y ))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y ))︸ ︷︷ ︸
conclusion

For combinator calculi, we have

C = Set

ΣX = 1 + X × X + . . .

B(X ,Y ) = Y + Y X

β-reduction or combinator

14



Higher-Order Abstract GSOS

Operational rules

p
q−→ p′

p q → p′

(λx .p) q → p[q/x ]

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y ))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y ))︸ ︷︷ ︸
conclusion

For typed combinator calculi, we have

C = SetTy where Ty is the set of types

ΣτX =
∐
σ∈Ty

Xσ_τ × Xσ + . . .

Bσ_τ (X ,Y ) = Yτ + Y Xσ
τ

β-reduction or combinator
14



Higher-Order Abstract GSOS

Operational rules

p
q−→ p′

p q → p′

(λx .p) q → p[q/x ]

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y ))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y ))︸ ︷︷ ︸
conclusion

For typed combinator calculi, we have

C = SetTy where Ty is the set of types

ΣτX =
∐
σ∈Ty

Xσ_τ × Xσ + . . .

Bσ_τ (X ,Y ) = Yτ + Y Xσ
τ

β-reduction or combinator
14



Higher-Order Abstract GSOS

Operational rules

p
q−→ p′

p q → p′

(λx .p) q → p[q/x ]

∼=?

Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y ))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y ))︸ ︷︷ ︸
conclusion

For the call-by-name λ-calculus, we have

C = SetF

ΣX = V + δX + X × X (Fiore, Plotkin and Turi [11])

B(X ,Y ) = 〈X ,Y 〉

substitution stucture

× (Y + Y X + 1)

β-reduction, λ-expr or stuck
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Higher-Order Abstract GSOS

Operational rules

(λx .p) q → p[q/x ]

p → p′

p q → p′ q
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Higher-order GSOS laws: (di-)natural trf.

ρX ,Y : Σ(X × B(X ,Y ))︸ ︷︷ ︸
premises

→ B(X ,Σ∗(X + Y ))︸ ︷︷ ︸
conclusion

I Operational model γ : µΣ

programs

→ B(µΣ, µΣ), denotational model.

e.g. γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x ]), (γ(I ) = id for SKI)

I Key feature: compositionality, i.e. bisimilarity is a congruence.︸ ︷︷ ︸
Proof: more complex than first-order case + needs mild assumptions.
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Strong Applicative Bisimilarity

Coalgebraic bisimilarity on operational model µΣ→ B(µΣ, µΣ)

=

strong applicative bisimilarity.

Example: λ-calculus

Greatest relation ∼⊆ Λ

closed λ-terms

× Λ such that for t1 ∼ t2,

t1 → t ′1 =⇒ t2 → t ′2 ∧ t ′1 ∼ t ′2;

t1 = λx .t ′1 =⇒ t2 = λx .t ′2 ∧ ∀e ∈ Λ. t ′1[e/x ] ∼ t ′2[e/x ];

+ two symmetric conditions
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Abstract modelling of Operational Semantics

Concrete/Abstract

1. Algebraic signature Σ̌

2. Program terms µΣ

3. (Impl.) nature of computation

4. Operational rules
t→t ′

t·s→t ′·s
5. Oper. model t → t ′, t, t ′ ∈ µΣ

6. Strong applicative bisimulation

1. Syntax endofunctor Σ: C → C
2. Initial Σ-algebra µΣ = Σ∗(0)

3. Bifunctor B : Cop×C → C
4. Higher-order GSOS law ρX ,Y

5. Coalgebra γ : µΣ→ B(µΣ, µΣ)

6. B(µΣ,−)-bisimulations

Assuming a suitable category C. [5]: Congruence of

bisimilarity, for free!
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Question marks

Concrete/Abstract

8. Howe’s closure

9. Howe’s method

10. Logical predicates/relations

11. Fundamental Properties

8. ???

9. ???

10. ???

11. ???

We want to model all of the above generically, in a language-independent manner.
Relation

Lifting!

Predicate

Lifting!

18
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Relational Reasoning



How to do program discourse, categorically

Key concept 1: If C is our base universe of discourse, we can form the categories

Rel(C) and Pred(C) of resp. (homogenous) relations and predicates on C. These are

the categories of subobjects on rep. X × X and X .

R S

X × X Y × Y

〈lR ,rR〉 〈lS ,rS 〉
f×f

P Q

X Y

p q

f

Key concept 2: We extend functors (and the rest of the constructions) to Rel(C) and

Pred(C), a process that is known as relation (or predicate) lifting [12].

Rel(C) Rel(C)

C C
|−|

Σ

|−|
Σ

Rel(C)op × Rel(C) Rel(C)

Cop×C C

|−|op×|−|

B

|−|

B

Also, write PredX (C), RelX (C) for the lattices of resp. predicates and relations on X .
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Act I, Induction. Part 1, Predicates.

Let P � µΣ be a predicate on terms (assume a typed syntax, for the heck of it).

Structural induction

1. (Repeat for every operation) For all t : τ1 _ τ2, s : τ1 such that Pτ1_τ2(t) and

Pτ1(s), then Pτ2(t s).

2. By induction, for all types τ and terms t : τ , Pτ (t).

Unary induction proof principle

1. Σ(P) represents 1-depth terms (operations) whose subterms are in P (Σ is the

canonical lifting). There is a Σ-algebra structure

Σ(P) ≤ ι?[P], where ι : ΣµΣ→ µΣ is the initial Σ-algebra.

2. As initial algebras have no proper subalgebras, P ∼= µΣ.
20



Act I, Induction. Part 2, Relations.

Let R � µΣ× µΣ be a relation on terms.

Structural induction (Fundamental Property)

1. (Repeat for every operation) For all t1, t2 : τ1 _ τ2, s1, s2 : τ1 such that

Rτ1_τ2(t1, t2) and Rτ1(s1, s2), then Rτ2(t2 s2, t2 s2).

2. Then for all types τ , relation Rτ is reflexive.

Binary induction proof principle

1. Σ(R) represents pairs of 1-depth terms with subterms in R. If there is

Σ(R) ≤ (ι× ι)?[R](that is, R is a congruence),

2. then ∆ ≤ R because all congruences on an initial algebra are reflexive.

21



Act II, Bisimulations. Prelude.

Simple go-to example (untyped syntax this time)

B(X ,Y ) : Cop×C → C γ : µΣ→ B(µΣ, µΣ)

B(X ,Y ) = Y + Y X γ(t) = t ′ if t → t ′ and γ(λx .M) = (e 7→ M[e/x ])

Pred(C)op × Pred(C) Pred(C)

Cop×C C

|−|op×|−|

B

|−|

B

Rel(C)op × Rel(C) Rel(C)

Cop×C C

|−|op×|−|

B

|−|

B

Let R,S ⊆ µΣ× µΣ be relations. Then B(R,S) amounts to the following:

B(R,S) = {(t1, t2) | Q(t1, t2)} ∨ {f ∈ µΣµΣ | ∀t1, t2.R(t1, t2) =⇒ Q(f (t1), f (t2))},

aka, related inputs are mapped to related outputs!
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Act II, Bisimulations. Logical Relations.

Let R be a relation on the state space of a coalgebra h : X → B(X ,X ). We say that

R is a logical relation (for h, h) if

R ≤ h?[B(R,R)]

If R is logical, then the following is true for all t, s : σ _ τ with Rσ_τ (t, s):

1. If t = λx : σ.t ′, then s = λx : σ.s ′ and

for all terms e1, e2 : σ with Rσ(e1, e2), we have Rτ (t ′[e1/x ], s ′[e2/x ]).

2. If t → t ′ then s → s ′ and Rσ_τ (t ′, s ′).
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Act II, Bisimulations. Part 2, Relations.

Bisimulations, logical relations and step-indexing [8]

Let h : X → B(X ,X ) be a coalgebra and h̃ : X → B(X ,X ) be a weakening of h

(think → vs its saturation/closure ⇒). We say that:

1. A relation R on X is a (B-)bisimulation (for h, h̃) if R ≤ (h × h̃)?[B(∆,R)].

2. A relation R on X is a (B-)logical relation (for h, h̃) if R ≤ (h × h̃)?[B(R,R)].

3. An ordinal-indexed family of relations (Rα� X × X )α is a (B-)step-indexed

logical relation (for h, h̃) if it forms a decreasing chain (i.e. Rα ≤ Rβ for all

β < α) and satisfies

Rα+1 ≤ (h × h̃)?[B(Rα,Rα)] for all α.
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Abstract modelling of Predicates and Relations

Concrete/Abstract

1. Predicates, relations on terms

2. Predicate, relational reasoning

3. (P is a) Logical Predicate

4. (R is a) Logical Relation

5. Fundamental Property

of Logical Relations

6. Constructing that Logical

Relation, the chosen one

7. What’s in it for me?

1. P � µΣ, R � µΣ× µΣ

2. Complete, well-powered cat. C
3. P ≤ h?[B(P,P)]

4. R ≤ (h × h̃)?[B(R,R)]

5. Generalized induction

Σ(R) ≤ ι?[R] =⇒ ∆ ≤ R

6. Error 404 : Abstract

Construction Missing

7. ???
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Recall that relation lifting is algebraic and coalgebraic, and

independent of the Higher-order Abstract GSOS framework.

However, the marriage of algebra and coalgebra that HO Abstract
GSOS represents extends along their liftings :).

26



Abstract Reasoning with

Step-indexed Logical Relations



Constructing step-indexed logical relation, Coalgebraically

Let’s systematize the construction of a step-indexed logical relation, in a

language-independent manner.

Step-indexed Henceforth Relation Transformer

Let B : Cop×C → C with a relation lifting B, and let c , c̃ : X → B(X ,X ) be

coalgebras. For every R � X × X we define the step-indexed logical relation

(�B,c,c̃,αR � X × X )α by transfinite induction (writing �α for simplicity):

�0R = R,

�α+1R = �αR ∧ (c × c̃)?[B(�αR,�αR)],

�αR =
∧
β<α

�βR for limit ordinals α.

Under mild conditions, there exists ν with �ν+1R = �νR, which makes �νR logical.

For the logical relation, the “chosen one”, plug R = > = X × X .
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Constructing step-indexed logical relation, Coalgebraically

L0
τ (Γ) = >τ (Γ) = {(t, s) | Γ ` t, s : τ}
Lα+1
τ = Lατ ∩ Sτ (Lα,Lα) ∩ Eτ (Lα) ∩ Vτ (Lα,Lα)

Lατ (Γ) =
⋂
β<α

Lατ (Γ) for limit ordinals α.

Sτ (Γ)(Q,R) = {(t, s) | for all ∆ and QΓ(x)(∆)(ux , vx) (x ∈ |Γ|),
one has Rτ (∆)(t[~u], s[~v ])},

Eτ (Γ)(R) = {(t, s) | if t → t ′ then ∃s ′. s ⇒ s ′ ∧ Rτ (Γ)(t ′, s ′)},
Vτ1�τ2(Γ)(Q,R) = {(t, s) | if t = pairτ1,τ2

(t1, t2) then ∃s1, s2. s ⇒ pairτ1,τ2
(s1, s2)∧

Rτ1(Γ)(t1, s1) ∧ Rτ2(Γ)(t2, s2)},
Vµα.τ (Γ)(Q,R) = {(t, s) | if t = foldτ (t ′) then ∃s ′. s ⇒ foldτ (s ′) ∧ Rτ [µα.τ/α](Γ)(t ′, s ′)},
Vτ1_τ2(Γ)(Q,R) = {(t, s) | for all Qτ1(Γ)(e, e ′),

if t = λx .t ′ then ∃s ′. s ⇒ λx .s ′ ∧ Rτ2(Γ)(t ′[e/x ], s ′[e ′/x ])}. 28



Logical Relations, abstractly

Data: Higher-Order GSOS law of Σ over B in a suitable category C, liftings, weakening

of the operational model (the coalgebra on terms µΣ) and mild conditions on C.

Main theorem (informal)

Let R � µΣ× µΣ be a congruence. Assuming a lax-bialgebra condition. If R is a

congruence, then for all α, �αR is a congruence.

t
s

=⇒ t ′

t s ⇒ t ′
X t ⇒ t ′

t s ⇒ t ′ s
X

Corollary

1. For all α, �α> is a congruence.

2. �ν> is a congruence (and hence reflexive) and, for “reasonable” definitions of

contextual equivalence, sound w.r.t. contextual equivalence.
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The point of all this

Accept for a single slide that every higher-order operational semantics is a higher-order

GSOS law. You are presented with such semantics and looking for a sensible logical

relation, sound for contextual equivalence. What we’re saying is that the actual work

that needs to be done, the language-dependent part of the problem, is the following:

1. Decide what kinds of relational reasoning you’re looking for (define the lifting B).

2. Check that your notion of “weakening” is sensible w.r.t. the operational

semantics.

The intuition is that the standard compatibility lemmas contain lots of boilerplate,

contrived proof code that should be “automatic” under reasonable circumstances.
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Distilling the essence of Operational Methods

By systematizing Howe’s method and (step-indexed) logical

relations, we show that, assuming the operational semantics are

sane in certain way 2, then

1. Howe’s method can be applied.

2. The evident logical relation should be sound w.r.t. contextual

equivalence.

2They form a HO-GSOS law and a lax bialgebra.
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Thank you!
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S. Goncharov, S. Milius, L. Schröder, S. Tsampas, H. Urbat, “Towards a higher-order mathematical operational semantics”, in

50th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL 2023), ser. Proc. ACM Program. Lang. Vol. 7, ACM,

2023. doi: 10.1145/3571215.
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